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1. INTRODUCTION

Instrumental variables (IV) estimation is important in eco-
nomics. A common finding is that the precision of IV estimators
is low. This article explores potential efficiency gains that may
result from using moment conditions that are nonlinear in the
disturbances. It is known that this approach can produce large
efficiency gains in regression models. The hope is that such ef-
ficiency gains may also be present when models are estimated
by I'V. These gains can help in overcoming the low efficiency of
[V estimators.

A simple approach to improving efficiency in [V estimation
based on nonlinear functions of the residuals is to use flexible
parametric families of disturbance distributions. This approach
has proven useful in a variety of settings. For example, McDon-
ald and Newey (1988) presented a generalized t-distribution
that can be used to obtain partially adaptive estimators of re-
gression parameters. McDonald and White (1993) used the gen-
eralized t and an exponential generalized beta distribution to
show that substantial efficiency gains can be obtained from
partially adaptive estimators in applications characterized by
skewed and/or thick-tailed error distributions. Hansen, McDon-
ald, and Theodossiou (2005) considered some additional par-
tially adaptive regression estimators and found similar effi-
ciency gains.

Here we follow an iterative approach to estimation with flex-
ible distributions. We use residuals from a preliminary IV es-
timator to estimate the parameters of a density. We do this
by quasi-maximum likelihood on the residual distribution, al-
though other ways to estimate the parameters can be used. The
product of the instrumental variables and the location score for
the density, evaluated at the estimated distributional parameters,
is then used to form moment conditions for nonlinear IV esti-
mation. We give consistency and asymptotic normality results
for the estimator of the structural parameters. We also show that
the asymptotic variance of the structural slope estimator does
not depend on the estimator of the distributional parameters.

To help motivate the form of our estimator we derive the
semiparametric efficiency bound for the structural slope esti-
mators when the disturbance is independent of the instruments
and the reduced form is unrestricted. This bound depends on

‘the marginal distribution of the error and on the conditional ex-
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pectation of the endogenous variable. When the reduced form

for the endogenous right-hand side variables happens to be

linear and additively separable in an independent disturbance,
our nonlinear IV estimator achieves the semiparametric bound
when the true distribution is included in the parametric family.
Thus, the estimator has a “local” efficiency property, attaining
the semiparametric bound in some cases.

To evaluate efficiency gains in practice we consider two em-
pirical examples and carry out some Monte Carlo work. The
empirical applications are taken from Card (1995) and Angrist
and Krueger (1991). In the applications, we find that there may
be moderate efficiency gains in estimation from using more
flexible distributions. We also find evidence of potentially large
efficiency gains in the Monte Carlo work.

Previous work on IV estimation with nonlinear functions
of the residuals includes Newey (1990), Chernozhukov and
Hansen (2005), and Honoré and Hu (2004). Newey (1990) con-
sidered efficiency in nonlinear simultaneous equations with dis-
turbances independent of instruments, which specializes to the
case considered here. Chernozhukov and Hansen (2005) con-
sidered IV estimation where the residual function corresponds
to regression quantiles. Honoré and Hu (2004) also considered
estimation based on residual ranks.

Section 2 of the article introduces the model and estima-
tors. The flexible distributions we consider are described in
Section 3. Section 4 gives the asymptotic theory, including the
semiparametric variance bound. Section 5 reports results from
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the empirical applications with the results from the Monte Carlo
simulations included in Section 6. Section 7 concludes.

2. THE MODEL AND ESTIMATORS

The model we consider is a regression model with a distur-
bance that is independent of instruments. This model takes the
form

vi=Xfo+e Ele;] =0,

(1)

7y = Z(%7). & and z; independent.,

where vy, is aleft-hand side endogenous variable. X, is a p x|
vector of right-hand side variables, f is a p x 1 vector of
true parameter values, ¢ 1s a scalar disturbance. and Z; is an
m x| vector of instrumental variables that is a function of vari-
ables z; that are independent of the disturbance. We will assume
throughout that the first element of X; and of Z, is 1. so that the
mean zero restriction is just a normalization.

The nonlinear instrumental variables estimators (NLIV) we
consider are based on a parametric family of pdf’s. Let f(e. )
denote a member of this family with parameter vector y. In
keeping with the normalization adopted above we will restrict
the parameters so that the f(e. ¥ ) has mean zero. Also. let

ple.y)=dlInf(e y)/de.

If X 1s exogenous we can form an estimator of the parameters
by maximizing Y 'L Inf(v; — X/B. 7), where 7 is a prelimi-
nary estimator of y. This estimator has a first-order condition
0=>""_, Xip(y; — X/B. 7). We generalize this estimator to the
instrumental variables case by replacing X; with Z; outside p
to form moment conditions. These moment conditions take the
form

n
gPY=3 Ziptvi—X[B. 7).
=1
The estimator is obtained by minimizing a quadratic form in
g(pB). where the weighting matrix is the usual one for NLIV.
The estimator is given by

n
A=agmingp) 0~ 'up).  0=3"2z7.
pel :

=]
The asymptotic variance of the slope parameters. the coeffi-
cients of the nonconstant elements of X;. can be estimated in
the usual way for NLIV. Let &, = v, — X B and

" n
67 = Z PeE )7):/11. G= ZZ,X,/ p (& y)/de.

=] 1=

Also, let S =10. 7] be the selection matrix that picks out the last
p =1 rows of B where Ois a (p— 1) < | vector of zeros and
[is a p — 1 dimensional identity matrix. An estimator of the
asvmptotic variance of the slope parameter estimators Sﬁ IS
V=510

This variance estimator does not account for the presence of
the preliminary estimator . but turns out to be consistent for
the asymptotic variance of the slope parameter estimators un-
der Equation (1), In contrast. the asvmptotic variance of the first
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component of £ will depend on y in the usual way for two-step
estimators. For simplicity, and because interest often centers on
slope coefficients, we omit results on the asymptotic distribu-
tion of the first element of B

The NLIV estimator depends on a preliminary estimator j
of y. Two different approaches 1o estimation of y are a quasi-
maximum likelihood estimation (QMLE) and an approach that
minimizes a scalar that affects the asymptotic distribution of the
slope coetficients. Both are based on residuals & = v, — X,'ﬂ.
where £ is a preliminary estimator, such as a limited infor-
mation maximum likelihood (LIML) or two-stage least squares
(2SLS). The QMLE is given by

n
Yy =arg m)z,\x Z Infe,. y).

=]

This estimator will be consistent for the true value of y when
the density of &; has the form f(¢, y) for some y. The second
approach is to minimize an estimator of a scalar that can affect
the asymptotic variance. This estimator takes the form
" n 2
y =argmin Z/)(Z:,-. y)z/ Z dp(ei.y)/oe
g =] =]

When the reduced form for X; is additive this estimator will
minimize the asymptotic variance of SB. as will be shown be-
low. In general though. this y need not minimize the asymptotic
variance and so there will be no clear choice between the two
estimators of y in terms of asymptotic efficiency.

A final point that needs to be considered is how to select
which parametric family to use for obtaining the NLIV esti-
mates. There are a variety of approaches one might consider.
For example. one can choose a particular parametric family. es-
timate the distributional parameters using the first-stage LIML
or 2SLS residuals, and then test that the fitted distribution is
consistent with the data using a modification of a conventional
testing procedure, such as the information matrix test of White
(1982) or Kolmogorov-Smirnov tests. The tests will need to
be modified to account for the two-step nature of the proce-
dure. but will otherwise be quite standard. While this testing ap-
proach is intuitive and appealing on a number of dimensions. it
suffers from the usual drawback that considering multiple can-
didate distributions raises concerns about pretesting and related
size and power considerations. It also fails to get directly at
the question of interest, which is the efficiency of the estimator
of A.

A different approach. which we pursue in this article. is to
choose the parametric family based on a model selection pro-
cedure. Again, there are a variety of procedures that one may
wish to consider, but for simplicity, we focus on one intuitive
and rather simple approach. Specifically, we select the model
that produces the smallest value of

n n :
H = Z/)(ﬁ,.f/)z/ Zfi/}(g,_ﬂ),,"“} +

=1 =1

Inn

(k—2)—
n-

where p is the preliminary estimate of the distributional pura-
meters that have dimension & obtained by QMLE, minimizine
the first term of /. or some other method and £,18 a resid-

ual. &, = v, — X B for B a consistent estimator of Bo such as
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the LIML, 2SLS. or NLIV estimator. The first term is a scalar
quantity that is related to the asymptotic variance of the NLIV
estimator, and the second term is a Bayesian information cri-
terion (BIC)-type penalty for the number of parameters used to
fit the residual distribution. As noted above, the first component
of H relates to the asymptotic variance of S8, which will be
minimized when the first component of A is minimized when
the reduced form for X; is additive. H is simple to compute and
is directly related to the variance of the object of interest in a
leading case and so seems like a natural object upon which to
base model selection. Under the reduced form conditions and
regularity conditions given in Section S of this article, one can
establish the properties of this procedure as in Andrews (1999).
We end by noting that while this procedure is simple, it may not
select the estimator that produces the smallest asymptotic vari-
ance when the reduced form conditions given above are not sat-
isfied. We believe that it is still likely to select a model that cap-
tures much of the efficiency gain available from non-Gaussian
disturbances in more general settings though pursuing other ap-
proaches to estimation and model selection may be an interest-
ing avenue for other research.

3. DISTRIBUTIONS

Many distributions can be considered in the generalized IV
estimation procedure outlined in the previous section. The use
of such distributions as the normal or Laplace will not model
distributions that are both thick-tailed and asymmetric, both of
which are often observed with economic and financial data. The
skewed generalized t. the exponential generalized beta of the
second kind. and inverse hyperbolic sine distributions involve a
small number of distributional parameters and permit modeling
a wider range of data characteristics than the normal, Laplace, r,
and many other common distributions. These distributions will
be defined with basic properties and special cases summarized.
We note that there are many other flexible families of distribu-
tions that can be considered. Examples include the stable dis-
tributions, the generalized hyperbolic distribution, and mixture
distributions, to name a few. We chose to focus on our particular
set of distributions because they involve few distributional para-
meters and are relatively simple to implement while containing
as special cases many of the common distributions employed in
practice. Of course, there are a variety of reasons for which one
may prefer to use a different parametric family, and the main re-
sults of the article will continue to hold regardless of the family
considered.

3.1 Skewed Generalized t-Distribution (SGT)

The skewed generalized f-distribution (SGT) was obtained
by Theodossiou (1998) and can be defined by

SGT(yim. k., p.q)
= /)/[Z(I)ql"l"B( 1/pog)
< (14 1y =ml”/((1+ xsign(y — m)Pgp?)) ! ””'},

where B(-, -) is the beta function, m is the mode of v. and the
parameters p and ¢ control the height and tails of the density.

The parameter ¢ is a scale parameter and A determines the de-
gree of skewness with the area to the left of the mode equal o
(1= 4)/2: thus, positive (negative) values for 4 correspond to
positive (negative) skewness. Setting 2 = 0 in the SGT vields
the generalized 1 (GT) of McDonald and Newey (1988). Simi-
larly. setting p = 2 yields the skewed 1 (ST) of Hansen (1994,
which includes the Student-r distribution if 4 = 0. The skewed ¢
also includes the skewed Cauchy if pg = 1. Standardized values
for skewness and kurtosis in the ranges (—oc, o0) and (1.8, o),
respectively, can be modeled with the SGT. The SGT has all .
moments of order less than the degrees of freedom (pg).

Another important class of flexible density functions corre-
sponds to a limiting case ot the SGT. When the parameter ¢
grows indefinitely large, we obtain the skewed generalized er-
ror distribution (SGED) detined by

(y=m|? /(1A signCy—=m))P o))

(2¢T°(1/p)]

The parameter p in the SGED controls the height and tails of
the density and A controls the skewness. The SGED is sym-
metric for A = () and positively (negatively) skewed for positive
(negative) values of . The symmetric SGED is also known as
the generalized power (Subbotin 1923) distribution. The SGED
can easily be seen to include the skewed (A # 0) or symmet-
ric (A = 0) Laplace (SLaplace or Laplace, respectively) when
p = | and the skewed (& 5 0) or symmetric (A = 0) normal
(SNormal or Normal. respectively) when p = 2. The interrela-
tionships between the SGT and many of its special cases can be
visualized as in Figure 1.

pe

SGED(v;m. A, ¢.p) =

3.2 Exponential Generalized Beta of the
Second Kind (EGB2)

The four parameter EGB2 distribution is defined by the prob-
ability density function
(3/)(\'7f11)/'(p
[@B(p. ¢)(1 4 ely=midyp+q]’

where the parameters ¢. p, and ¢ are assumed to be positive, cf.
McDonald and Xu (1995); m and ¢ are, respectively, location
and scale parameters. The parameters p and ¢ are shape para-
meters. The EGB2 pdt is symmetric if and only if p and ¢ are

EGB2(vim, ¢.p.¢g) =

Staplace |
i

A=0

|
|

L

SGT distribution tree.

Fieure |




16

equal. The normal distribution is a limiting case of the EGB2
where the parameters p and ¢ are equal and grow indefinitely
large. Other special or limiting cases of the EGB2 include the
Gumbel, Burr 2, generalized Gompertz, extreme value, and lo-
gistic distributions. Standardized values for kurtosis are limited
to the range (3.0, 9.0), and the standardized skewness coetfi-
cient can assume values in the range (=2.0, 2.0).

3.3 Inverse Hyperbolic Sine (IHS)

The hyperbolic sine pdf was proposed by Johnson (1949)
and allows for modeling a wide range of skewness and Kkur-
tosis. The parameterization used here is slightly different than
the one used by Johnson and is based on the transformation
v =a+ bsinh(i + z/k) = a + bw where sinh is the hyper-
bolic sign. 2 is a standard normal, and a. b. %, and k are scaling
constants related. respectively. to the mean (), variance (o2).
skewness, and kurtosis of the random variable v. The pdf of v
can be written as

k(;((k3/:>(1mu/n+~/02+u3/al)-(Hmfmz)

V2162 +u?jo?)o?

HS(vi .ok, A) =

§

where u=y—pu 480,60 =1/0,.8 = (1,,/0y. 11, = 0.5(¢" —
e )% and o, = 0.5(e2 ™7 4 =2tk 2)05 (k77 —
1)%3; see Hansen, McDonald, and Theodossiou (2005). Posi-
tive (negative) values of A generate positive (negative) skew-
ness, and zero corresponds to symmetry. Smaller values of k
result in more leptokurtic distributions with the normal corre-
sponding to the limiting case of k — oo with A = 0. The IHS al-
lows skewness and kurtosis in the range (3, oo) and (—oc, 00),
respectively.

4. LARGE SAMPLE PROPERTIES

In this section we give an account of the asymptotic theory
of the estimator. To keep things relatively simple we restrict
ple.y) to be smooth in y, although the nonsmooth case can
be considered. as in McDonald and Newey (1988). The first
condition imposes the model of Equation (1) and identification.

Assumption 1. (a) Equation (1) is satisfied, W; = (v;, X;. Z)
=1, ..c0 n) are iid, X;; = 1. and Z;; = 1: (b) there is y*
such that y = y* 4+ 0,(1//n); (c) there is a unique solution
a’to Elp(e; —a, y®)] = 0: (d) there is at most one solution to
ElZip(vi — X8, y*)| = 0.

The next condition imposes smoothness and dominance con-
ditions.

Assumption 2. B is compact. p(e, y) is continuously ditfer-
entiable in € and y. and there is a function d(w) such E[d(W))]
exists and for # € B and all y in a neighborhood of y*,

Ip(v— B, )/)}3 < d(w).
1z)?
ZX" dp(y — X'B.y)/oe|

d(w).

1A

IA

d(w),
1Z0p(y — X' B.y)jay] < diw).

The final condition imposes rank conditions for asymptotic
normality.
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Assumption 3. Q = EIZ,Z,’] is nonsingular, and G = E|Z; x
X dp(e; —a™, y*)/0e] has rank p.

It is worth noting that the conditions imposed in Assump-
tions 1 through 3 place our theoretical results in the conven-
tional asymptotic framework. In particular, the full rank con-
dition in Assumption 3 rules out weak identification, and we
assume a fixed number of instruments, and thus are not consid-
ering many instrument asymptotic sequences. While consider-
ing inference issues for the NLIV estimator under these condi-
tions 1s an interesting question, we focus in this article on the
potential efficiency gains that may be achieved by considering
NLIV. We note that due to the GMM formulation of the prob-
lem. the approaches to weak-identification robust inference of),
for example, Stock and Wright (2000) and Kleibergen (2005)
can readily be adopted. In many instrument settings, one can
also consider the GMM approach of Newey and Windmeijer
(2007).

[t is also important to note that the model assumes indepen-
dence between the structural errors and the instruments. rul-
ing out heteroscedasticity. In principle. it will be simple to ac-
commodate parametric forms of heteroscedasticity by suitably
modifying the family of distributions to allow its parameters
to depend on the instruments and then suitably modifying the
moment conditions. However, the NLIV estimator will likely
be inconsistent as formulated in the presence of heteroscedas-
ticity. As such, researchers may wish to test for the presence
of heteroscedasticity in the LIML or 2SLS residuals obtained
in the first stage estimation, which can be done using any stan-
dard test for heteroscedasticity. A particularly simple test that is
available is a Hausman test of the difference between the NLIV
and 2SLS or LIML estimates of the structural parameters. Un-
der the assumption that the conditions given below such that
NLIV attains the efficiency bound hold, this test can be per-
formed simply by taking a quadratic form in the difference in
estimaied coefficients with the difference in estimated variances
as the weighting matrix. We consider this in the empirical ex-
amples in Section 5.

To describe the asymptotic variance of the slope coefficients
leto? = E[p(ei—a*. y*)*]. The asymptotic variance of S8 will
be

V=025(G'0 'G)"'s.

The following result shows the consistencyAand asymptotic nor-
mality of the slope coefficient estimator SB.

Theorem 1. 1f Assumptions | through 3 are satisfied then

JiSB - B S NO VY. Ty,

We now turn to the efficiency of the slope estimators. We
motivated the estimator by analogy with the exogenous X case,
but it is not clear a priori what the efficiency properties of such
an estimator might be. In particular, the form of the estimator
seems to use only information about the marginal distribution of
¢, and one may wonder whether more information is available.
We analyze efficiency in the semiparametric mode] where the
only substantive assumption imposed is the independence of ¢
and e. This is a “limited information” semiparametric model,
where no restrictions are placed on the conditional distribution

of the endogenous regressors given the instrumients - and the
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disturbance e. This model also does not restrict the form of the
distribution of & or the other random variables.

We derive the efficiency bound without a tull statement of
regularity conditions to avoid much additional notation and
clutter. This corresponds to a “formal™ derivation, as is com-
mon in the semiparametric efficiency literature, e.g., see Newey
(1990). To state the efficiency result let x denote the noncon-
stant elements of X, so that X = (1. x")". Let py(e) denote the
location score for e, that is po(e) = dInfy(e)/de, where fy(s)
is the marginal pdt of ¢, let T (e, z) = Elx|e, z|, and [T.(¢. z) =
dll(e, z)/de. The following result is based on equation (23) of
Newey (1990) and further calculations.

Theorem 2. In the semiparametric model of Equation (1)
the semiparametric variance bound for g is V* = (E[s*s*]) ™!
where

" = —po(e){Tl(e, 2) — E[T(e, 2)

5]}
—Ie(e, 2) + E[Tl (e, 2)|e].
If x=m(2) 4+ 7, and (e, n) is independent of z, then
s = —po(e){n(2) — E[(2)1},

Il

V*

[Elpo(e)*1} var(r(z)) .
Furthermore, for m = 7(z) and 7 = E[7] we have,

V=02{E[DInf(e —a*, y*)/0a])
x - / —1 =/ 2
x {El(x —0)Z'1Q7'E[Z(m — 7)1}
Finally, if 7 (z) is linear in Z and the pdf fo(¢) of ¢; also satisfies
Jfole) =f(e —a*|y™) then SB is an efficient estimator.

The semiparametric bound is the inverse of the variance of
the efficient score s*. It is interesting to note that s* depends
only the score py(e) for ¢ and the conditional mean E[x|e, Z].
When there is an additively separable, reduced-form 7 (z) + n
for x the efficient score takes a more familiar form. In that
case s* is analogous to the efficient score in a linear model
with exogenous regressors, where the regressors are replaced
by the reduced-form variables (). In particular, when the dis-
turbance is Gaussian, the bound corresponds to the variance of
an efficient instrumental variables estimator. More generally, it
corresponds to a GMM estimator where the location score for
the disturbance appears in place of the disturbance itself.

We also find that when the reduced form is additive, the as-
ymptotic variance of the NLIV estimator depends only on the
scalar function

Elp(ei — o, y* ) 1/Eldp(e; — a*, y*) /e ),

and can be minimized by choosing «* and y* to minimize
that function. Also, the NLIV estimator will attain the semi-
parametric variance bound when the reduced form is linear in
Z, additive in an independent error, and the parametric family

fle —aly) includes the truth at «* and y*. That is, among all

estimators that are consistent, asymptotically normal, and sat-
isty appropriate regularity conditions under the semiparametric
model of Equation (1), the estimator we consider will be et-
ficient under the aforementioned conditions. This kind of effi-
ciency property is sometimes termed “local efficiency,” refer-
ring to the efficiency of the estimator over a subset of the whole
semiparametric model.

When I1(e, ) is not additive in z and &, attaining efficiency
will require an approach different than NLIV based on flexible
families of distributions. We focus here on NLIV because it is
relatively simple and parsimonious and seems likely to capture
much of the efficiency gain available from non-Gaussian distur-
bances.

5. APPLICATIONS

In this section we apply the NLIV estimators described in
Section 2 to two models previously discussed in the litera-
ture. The first application i« to the problem considered by Card
(1995), which uses 1976 wage and schooling data from the
1966 cohort from the NLS to estimate returns to schooling.
The second example uses the model outlined by Angrist and
Krueger (1991) with quarter of birth as instrumental variables
to estimate returns to schooling based on the 1980 census for
men born between 1930 and 1939. Table | summarizes each of
these models and related datasets.

In each of the applications, we estimate models of the form

/
i = Bo+ Biyai + vy xi + €14,
vai = 7 x; + 13z + 1,

where yi;, v2;, x;, and z;, respectively, denote observations on
the dependent variable, the explanatory variable of interest, a
K x I vector of covariates, and a K> x | vector of instrumental
variables with yy, ;. and 7, being conformable column vec-
tors of structural and reduced form parameters and ¢,; and 2
denoting structural and reduced form random disturbances.

We start by estimating the parameters of the structural
equation using ordinary least squares (OLS), limited informa-
tion maximum likelihood (LIML), and two-stage least squares
(2SLS) for the two examples and report the estimated schooling
coefficients in Table 2. Figures 2 and 3 depict the estimated dis-
tributions of the first-step LIML residuals for the two examples

Table 1. Model summary

Card (1995)

Angrist and Krueger (1991)

Data
N = 3010

Log (wage)

Years of education

Dependent variable (vy,)
Explanatory variable of interest (yo;)
Control variables (x;)

Instruments (z;)

NLS Young Men (1966 Cohort) 1976 sample.

Race, experience, SMSA, region

Binary: grew up near a 4 year college

1980 U.S. Census Sample of men born
between 1930 and 1939. N = 329,509
Log (wage)

Years of education

Year of birth (9 variables)

State of birth (50 variables)

Binary variables: quarter of birth
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Table 2. Estimation results of schooling coefficient

Card Angrist-Krueger homoscedastic Angrist—=Krueger heteroscedastic
Estumator el .\)"{I H B .\f"’ H B -\/;J H
OLS 0.075 0.0035 0.067 0.0004 0.067 0.0004
LIML 0.132 0.0550 0.150 0.109 0.0198 0.419 0.109 0.0198 0.419
2SL.S 0.132 0.0550 0.150 0.108 0.0195 0.418 0.108 0.0195 0.418
1 0.131 0.0508 0.149 0.078 0.0143 0.227 0.082 0.0144 0.239
GT 0.130 0.0504 0.152 0.081 0.0137 (0.228 0.084 0.0138 0.236
EGB2 0.132 0.0521 0.149 0.070 0.0142 0.229 0.110 0.0156 0.229
IHS 0.132 0.0522 0.149 0.071* 0.0139* 0.224 0.1 0.0151* 0.224
ST 0.128* 0.0502* 0.148 0.074 0.0144 0.225 0.112 0.0148 0.226
SGT 0.124 0.0582 0.149 0.075 0.0139 0.226 0111 0.0140 0.227
e 13.3 108.1
NOTE:  Estimated schooling coefficient and standard error using various estimators for Card (1995) and Angrist and Krueger (1991) examples summuarized in Table 1. The tirst two

rows correspond 1o OLS and LIML. and the remaiming rows give results using NLIV estimators corresponding 1o the specified distribution. Note that NLIV based on the normal is
cquivident 10 2SLS. The columin fabeled H reports nH where H is the model selection eriterion defined in the text. * denotes the model chosen by the simple model selection procedure

along with the normal distribution and SGT distribution implied
by the maximum likelihood estimates of their respective para-
meters. The Card residual distribution is much more similar to a
normal than is the residual distribution for the Angrist-Krueger
data, though the SGT provides an improved fit in both cases.
We also report the two-step NLIV estimates of B; based on
the 7, GT. EGB2, IHS, ST, and SGT pdf’s with first step esti-
mated by LIML in Table 2. In both examples. we report results
based on NLIV imposing homoscedasticity on the error terms.
We also report results based on NLIV where we allow for het-
eroscedasticity, specifically by allowing all distributional para-
meters to be different depending on an individual's quarter of
birth, for the Angrist-Krueger example; these estimates are re-
ported in the column labeled “Angrist-Krueger heteroscedastic-
ity.” Also of interest is the value of the concentration parameter
ur =z - X(X'X)~'X")Zm>/ Var(1s;)), which provides a
measure of the strength of the instruments. It takes on a rather
small value, 13, in the Card data and is large, 108, in the Angrist
and Krueger data. In all cases, we report only results for the co-
efficient on the endogenous variable as this is the parameter of
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Figure 2. LIML. residual distribution from Card data.

interest in these studies. While there is obviously some varia-
tion, the same basic results hold for the other covariates in each
model which generally exhibit efficiency gains that are similar
to those for the coefficient on the endogenous variable.
Looking at the results, we see that the NLIV estimates agree
fairly closely with the LIML estimates in the Card example, but
are quite different in the Angrist-Krueger example when ho-
moscedasticity is imposed. This difference is essentially elim-
inated when we allow for heteroscedasticity. In the Card ex-
ample the NLIV standard errors are quite close to the 2SLS
standard errors. Given that the NLIV asymptotic approxima-
tion works relatively poorly with low concentration parameter
in the simulation study reported below, we find no evidence of
improvement in the Card example. In the Angrist-Krueger ex-
ample, where the concentration parameter is quite high, we find
evidence of substantial efficiency gains of about 30%. In the
Card example. we find the model selection procedure chooses
the ST, which gives an estimate of the returns to schooling of
0.128 with an estimated standard error of 0.0502; in this exam-
ple, the LIML estimate is 0.132 with standard error of 0.0550.
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o o o o
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- - : T

£
N
T

=
T

Residuals

Figure 3. LIML residual distribution from

a Angrist and Krueger
ata.
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In the Angrist-Krueger example. the model selection procedure
chooses the THS. which produces an estimate of 0.071 with
standard error of 0.0139 in the homoscedastic case and 0.111
with standard error of 0.0151 in the heteroscedastic case while
the LIML estimate is 0.109 with standard error 0.0198. Finally.
we can compare the estimated schooling coefficient from LIML
(or 25LS) to the NLIV estimate to test for heteroscedasticity
(and potentially other types of misspecification). Under the as-
sumption that the conditions required for the NLIV estimator
to attain the efficiency bound are satisfied, the standard error
of this difference coefticients is simply given as the square root
of the difference in the estimated variances, and the difterence
between the coefficients divided by this standard error will be
asymptotically standard normal. For the Card example, we ob-
tain a value of this test statistic of 0.178 using LIML and the ST
results and will thus fail to reject the hypothesis of homoscedas-
ticity at conventional levels. On the other hand, the value of this
statistic is 2.62 using LIML and the THS results in the Angrist—
Krueger example under homoscedasticity, and we will reject the
hypothesis of independence at usual levels. However, in the het-
eroscedastic specification, we obtain a test statistic of —0.156
and will fail to reject the hypothesis at conventional levels.

6. SIMULATION RESULTS

We investigate the properties of some NLIV estimators using
Monte Carlo simulations that are similar to the data generating
process considered in Newey and Windmeijer (2007). Let the
structural relation of interest be

yii=yup + &,
with the corresponding reduced form representation of yo; being
!
Y2i =37+ 2.

where the structural disturbance is written in terms of reduced
form disturbances as follows:

f 5
& = pnai+ V L —p=nii.

To complete the data generating process tor the Monte Carlo
study observations of the exogenous variables (instruments)
will be generated as

i~ N0, [g)

fori=1,2,..., n. The reduced form coetficients () will be
specified to be of the form

—
o

T = /‘/ﬂ,'k.

V Kn "'
where g denotes a K x 1 column vector ot ones and /11
denotes the concentration parameter [E(x'Z Zx/ Var(y)2;)) =
(m)' 7/ Var(n2;)]. The distribution of the estimators of 8 de-
pends upon the values of the concentration parameter (7)),
the number ot instruments (K), the correlation (p) between the
structural and reduced form (for vo;) disturbances. the distrib-
ution of the disturbances. and the sample size. In the sample
design we generate samples of size 200 with g = 0.1, > =
15,30,60, K =3 or 10, and p = 0.3 or 0.5. We consider
three different distributions for 1y, and iy: (1) standard normal;

(2) mixture of normal variables or a variance-contaminated nor-
mal. UTN[O. 1/9] 4 (1 = U/)*N[0, 9] where U is an independent
Bernoulli0.9) random variable: and (3) lognormal. In order for

each error distribution to have a zero mean and unitary vari-

ance the third reduced form error distribution is generated as
N0 05
€ €

o)
IVVIEmIt: Carlo simulation results of the alternative estimators
of the structural slope coefficient (8 = 0.1) based on 20,000
simulation replications are summarized in Tables 3, 4, and 3.
We report median bias (Bias), interquartile range (IQR), me-
dian absolute deviation (MAD). and 95% confidence interval
coverage probability (CP) for estimates of  obtained by OLS,
2SLS. and LIML. as well as the two-step NLIV estimators of 8
corresponding to the ¢, GT, EGB2. IHS, ST, and SGT pdt’s us-
ing LIML first step estimates and QMLE based on the LIML
residuals to obtain estimates of the distributional parameters.

Results for the normal error distribution are summarized in
Table 3. In this case, the median sample bias is minimized by
LIML among the estimators we consider. Among the NLIV es-
timators, the bias and spread as measured by the interquartile
range are largely insensitive to the pdf. In this case. the NLIV
estimators all perform worse than LIML in terms ot median
bias, but appear to have considerably less dispersion as mea-
sured by IQR. NLIV estimators also dominate LIML in terms
of estimator risk as measured by MAD. We note that 2SLS,
which is numerically identical to NLIV using a normal distri-
bution, does slightly better than the other NLIV estimators. As
expected, we see that coverage probabilities for NLIV estima-
tors may be distorted when instruments are weak (2 = 15) or
many (K = 10) and that this distortion decreascs as MZ/K In-
creases.

The results corresponding to the case of a mixed normal or
variance contaminated error distribution that is symmetric with
thick tails (standardized kurtosis is approximately 20) are re-
ported in Table 4. The median bias of all estimators decreases
as 1u” /K increases. The NLIV estimators produce substantially
smaller values ot IQR than LIML or 2SLS with IQR’s less
than 50% those ot LIML or 2SLS in some cases. The gains
are also apparent in MAD terms where improvements are sim-
ilar to those in IQR. It is interesting that in this case, unlike the
normal design, the majority of NLIV estimators have median
biases that are comparable to LIML. The NLIV estimators, es-
pecially those based on the SGT, do suifer somewhat relative
to LIML in terms of coverage probability. We also see that us-
ing the simple model selection procedure produces an estimator
with quite favorable properties.

The impact of a skewed and leptokurtic error distribution on
estimator performance can be seen in Table 5. As in the thick-
tailed case above, we see that the NLIV estimators show large
improvements in efficiency that are not necessarily accompa-
nied by large increases in bias relative to LIML or 2SLS. Not
surprisingly, the NLIV estimators based on possibly skewed
pdf’s show the greatest improvement with the exception of the
SGT, which may need a larger sample size to accurately model
the underlying error distribution. As before, we see that the
NLIV estimators suffer somewhat in terms of coverage relative
to LIML. This is especially true for the SGT and GT, which
perform very poorly. We also see that model selection proce-
dure produces an estimator that performs well overall.
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Overall. the simulation results are encouraging for the NLIV
estimators. [n the case of nonnormal disturbances. the NLIV
estimators show substantial gains relative to LIML or 2SLS in
terms of dispersion and MAD. These gains are accompanied by
only minor losses in the case of normal errors. As expected.
the coverage probabilities of interval estimates based on the
NLIV estimators
many instruments, though this can likely be remedied by adopt-

are somewhat distorted in cases of weak or

ing existing results from the weak and many instruments litera-
ture in these cases. There also appear to be some distortions in
coverage probabilities even when the instruments are stronger,
though they are generally minor. This can be the result of the
small sample or may suggest that pursuing other approaches to
estimating standard errors, such as the bootstrap, may be desir-
able in this context.

7. SUMMARY AND CONCLUSIONS

In this article, we consider efficiency gains that may be avail-
able using moment conditions which are nonlinear in the dis-
turbances. The nonlinear tunctions we consider are based on
the use of flexible parametric families of disturbance distribu-
tions. We illustrate the approach in two empirical examples. In
both examples, the NLIV estimators are associated with smaller
standard errors than conventional IV estimators. Monte Carlo
simulations demonstrate that while NLIV estimators may be as-
sociated with modest efficiency loss in the case of normal error
distributions. they offer the possibility of significant efficiency
improvements in the presence of thick-tailed and/or skewed er-
ror distributions.

APPENDIX: PROOFS OF THEOREMS
Proof of Theorem 1

Let ¢y denote the first unit vector and g% = fy + «¥e¢y. By
Assumption |,

E\Zip(y; —

XiB" vyl =ElZiplei —a™, v

= ElZ|Elp(e; — o™y )] =0.

Also, this A% is unique by Assumption 1. Let Z =(Z,..... Z,)
and W = Q7' Note that n(;)"l =Z2'Z/nm ! 2w by the
law of Targe numbers (LLN) and the continuous mapping the-
orem (CMT). Let g(B) = ElZip(yv; — X B.y" )] and Q(f) =
By We(B
gence argument,

). By Assumption 2 and a standard uniform conver-

~ ; I
sup lle(p)/n = gl — 0.
pel
It follows as in the proof of theorem 2.6 of Newey and McFad-
den (1994) that
sup 12807 (B /n - QB — 0.
pels
Also, the objective function Q(f) has a unique minimum at
B so it follows as in the pmn! of theorem 2.6 of Newey and

McFadden (1994) that § — 8.

Let (fi([ﬂ) = ZiX!dpiy

P i
standard arguments that for any ﬁ — %,

¥ i = X'B.yy/oe)/n. ttollows by

Gip) L G

where g is an intermediate value between 8 and f3.

3 : : e Wy
Next. for u; = ¢, — o and any y — y . by stundard argu-

ments.

) dp . 3
—Z —(1/1 7y L E[? '/ (u;. v‘)} g
n Jv t

4)}/

b
i
where r = E[dp(u;. y™) /oy |/ El0p(u;. y ) /dul], and ¢ is the i
first unit vector. It then follows by an expansion that 8
o . i
ng(B*) = — Zip(ui.v) '
\/— B \/I—l X/: Py
1
= ZZ//)(H,-. ) i
Vs |
ap i

—Z i/ (i, v )f(y—y)

Y4+ Geyrn(y —y*) + op(1).

f ZZ,p i,
It also follows by standard GMM arguments that

(B =B = —(GWG)'GWng(B*) + op(1)

= — P W— Zz,p(u, yE

—eyryny —y* )y +op(l).

By the Lindberg-Levy central limit theorem. Y, Zip(u;. y*)/

d o) . . ;
Ji— N(O.o?Q~"). Premultiplying by S we obtain (by
Sey =0),

JnS(p — ")

2 7 I o~ ™
= S w\/—]_l Zz,pm,. Y o)
,_

5 S(GWG)'G'WN0, 620 )

=N, a2S(G'WG) 'S,

giving the first conclusion. The second conclusion also follows

by a standard argument.
Proof of Theorem 2

Here let 6 denote the slope coefticients S, By the assump-
tion that z and ¢ are independent the joint pdf ot ¢, 2. and X take

the torm

flerg(oh(yle, 2).
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where [ and ¢ denote the marginal densities of ¢ and z. respec-
tively, and /i is the conditional pdf of X given z and . Substi-
tuting v — '8 for ¢ and differentiating. we find the score for &
10 be

ss = —x{pole)+dlInhixle, Z)oe),
polet =dlInfyle)/de.
Applying equation (23) of Newey (1990), the efficient score is
8" = Elsplz el — Elsgle].

Note also that by interchanging the order of differentiation and
integration we have

ElxdInh(xle, 2)dele. 2] = / xlahxle. 2)/oeldy =Tl (e, 2).
Then applying iterated expectations gives the first conclusion.

Next, if x = 7(2) + 5 for n independent of Z we have

[M(e.2) =m(2) + r(e). rle) = Elnlel.

[Me(e.2) = Aele) = OA(e)/De.
It then follows that
M(e.2) — E[Tl(e. el =m(2) + ale) — E[n(2)] — A(e)
=7r(3) — E[n(z)],
Me(e.2) — E[Ie (e, 2)|€] = e (€) — Ae(e) = 0.

Substituting these expressions in the formula for s* gives the
second conclusion.

Next, suppose that w(Z) is linear in Z, i.e., that m(Z) = [1Z
for a constant matrix I1. Let n; = I1Z;,, 7 = E[n;]. and pg; =
dp(e; —a*, y™)/de. Note that X; = (1, 7/) + (0. 7)) so that

G = E[ZiX;pei) = EIZi(1. 7)) JE[pei] + E1ZIEL pei(0, ;)]
= E(Zi(0. 7] = 7"))Epei]
+ EIZINElpe)(1. 7') + Elpei(0. 1}
= Elpi){E1Zi0. 5/ — 7)) + E[Z)(1.d")}.
a =7+ E[peini]/Elpei].

Note that Q7'E|Zi] = 07'Qe; = ¢ and that ¢|E[Z;(0. 7] —
Al =E[-0.n) —7")]=0. Also. for

ENO. 7w} — 7Y ZQ 7 E[Z:0. 1] — 7))
= diagl0. Q']
O~ = El(n] - #'YZ1Q " ElZi(x] ~ 7).
Then we have

G'O7'G = (E[pei D {diagl0. Q) + (1.d') (1, d))

' o] d
= {Elwe])” {u Q +(1u':| .
By the partitioned mverse formula it follows that
V= (TZS/((:'/Q Gy 's = {rrzy/([;'[/i,,l):}(Q +ad —ad' /1) !
=/ (Elp Q.

aiving the third conclusion.
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For the fourth conclusion, note that when JT/' 1s a linear com-
bination of Z; then (0. 7/ — 7') is 100, so that

EN0. 7] —7YZ)Q "ElZ:0. 1] = 7))

-/

= E[(0, 71; —71) (O.JTI/ — 7'y = diag|0. var(m)].

Furthermore, if fy(e) = f(¢ — ™, y*) then py(e) = ple) and
the information matrix equality for a location parameter gives
Elpei|l=—0"= E[/)()(b‘)z]. so that

V= {E[m“.)?]} var(m;) ' = (Elsst 't
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