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Abstract

This paper analyzes two contests in which customers make non-refundable
bids to determine the order in which they are served. In the auction for priority
access, customers are served in descending order of their bids, where each in
turn is allowed to purchase any amount of a divisible good at an exogenous
per-unit price, until the fixed supply is exhausted. This model is immediately
applicable to kickbacks paid to circumvent price controls, allocation by queuing,
and other forms of rent seeking.

This auction implements a two-part tariff, allowing the seller to capture
nearly all rents. Revenue is greatest when bidders have similar valuations,
and when exactly one customer is unable to make a purchase. Unlike all-pay
auctions of an indivisible prize, the exclusion principle — that revenues increase
when the strictly-highest-valuation bidder is excluded from participation —
does not always hold.

The auction is also compared to lotteries for priority access, an extension
of single prize contests. The auction raises more revenue than the lottery when
agents’ valuations are not too different. Also, the auction is typically more
efficient, resulting in higher expected total welfare.
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1 Introduction

When a price ceiling is imposed in a market, sellers often find creative ways to cir-

cumvent its effects. One such method is to have customers compete for the order

in which they are served, each offering (under-the-table) payments to obtain higher

priority. For instance, would-be tenants of rent-controlled apartments may offer “key

money” to promote their application to the top of the waiting list. Similarly, patrons

might pay a store owner for first access to the next shipment of goods in short supply.

These sorts of payments clearly violate the spirit (and, often, the letter) of price

control laws, since customers effectively pay more than the legally prescribed price.

However, it would likely be easier to keep such payments hidden than if the seller

simply charged a higher price per unit. Access payments would be fewer in num-

ber than per-unit payments, and thus easier to keep off-the-books and unadvertised.

Moreover, once access is granted, the contracts that follow (such as leases or purchase

orders) use the official price, while any agreement to higher per-unit prices (such as

a monthly rent supplement) would be unenforceable in the legal system.

Access payments also offer a more subtle benefit: the seller can effectively use

these as a form of second degree price discrimination to capture much (if not all) of

the consumer surplus. Indeed, this method can generate greater profits than selling

all units at the market clearing per-unit price. Ironically, this price discrimination

scheme is only possible because of the price-ceiling-induced shortage, which forces

buyers to compete for access.

This paper investigates access payments by developing a model of contests for

priority access.1 We consider a single seller with a fixed supply of a perfectly divisible

good, to be sold among several buyers. We characterize two contest mechanisms for

allocating the limited resource: an all-pay auction and a lottery.

In the auction for priority access, each buyer simultaneously submits a non-

refundable bid (access payment), which determines the priority order of service. The

agent with the highest bid is given the first opportunity to procure some of the good,

paying an additional fixed amount per unit. If any supply remains, access to the good

is then granted to the second highest bidder, and so forth. Any ties are randomly

broken.

1In addition to kickbacks during price controls, described above, our model is readily applicable
to rationing by queuing (such as for concert tickets or Black Friday deals) and other forms of rent
seeking. We reinterpret our results for these environments in the Conclusion.
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In the lottery for priority access, buyers again submit non-refundable bids, but

each buyer’s probability of winning first priority is equal to that buyer’s bid divided

by the sum of all other bids. Similarly, second priority is determined randomly from

the same bids, except that the first priority winner is excluded. This process iterates

until the supply is exhausted.2

The auction environment provides more technical challenge than the lottery; thus,

an important contribution of this paper is to characterize its equilibria. An analytic

solution is not always possible, but we identify a number of features that are highly

useful to narrow the search when solving numerically.

Beyond this technical contribution, we demonstrate that the auction implements

a form of 2nd degree price discrimination, where the bids act as an entry fee whose

level is endogenously determined by competition among the bidders. The bidding

can extract much of the consumer surplus, particularly when buyers have similar

preferences, which also occurs in the standard analysis of two-part tariffs (as in Oi,

1971). In the extreme case in which preferences are identical, the seller can fully

extract rent as long as at least one bidder will be unable to purchase any of the

good.3

Prior work on all-pay auctions with a single indivisible prize (Baye, et al , 1993;

Menicucci, 2006) has identified an exclusion principle, meaning that the seller can

increase expected bid revenue by excluding some of the bidders from the auction.

Indeed, if anyone, it is the bidders with the highest valuations who should be ex-

cluded. This occurs when the presence of one dominant bidder will discourage other

participants from placing moderately high bids.

In our divisible good model, the exclusion principle must be altered. For instance,

in our three-bidder example, excluding a bidder only generates greater revenue when

the value of placing second is relatively small and thus less important to bidding

strategies. Moreover, the seller may prefer to exclude a bidder with the lowest valu-

ation rather than the highest.

2This lottery process is equivalent to a raffle. By purchasing more tickets (i.e. a larger access
payment), the participant improves his odds of being drawn as the first winner; but this is always
relative to the total number of tickets sold.

3This is similar to the outcome of pay-to-bid auctions, where bidders pay a fee to increase the
current auction price. As modeled by Platt, Price and Tappen (2010), the pay-to-bid auction fully
dissipates expected consumer surplus even though the typical closing price is well below retail.
Several nascent internet sites have implemented such auctions; data from one such site provides
strong evidence confirming the model.
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Finally, we compare the performance of the two types of contests on the dimensions

of revenue and efficiency. While it is natural to think that first priority always goes

to the highest bidder (as in the auction), it is also reasonable to consider a less

deterministic outcome. Other random factors may enter into the seller’s decision,

and with under-the-table access payments, bidders would not have legal recourse to

enforce their claim to a particular priority. The lottery environment might capture

this uncertainty, where the bidder can improve his chances with larger payments, but

has no guarantee. Indeed, the lottery and the all-pay auction are each special cases

of the contest success function introduced by Tullock (1975, 1980) in the context of

a contest for a single indivisible prize. Fang (2002) provides an extensive comparison

of these two cases.4

Our results are characterized in terms of each bidder’s net gain in utility from

placing first versus second, or second versus third. The auction is more lucrative than

the lottery when the net gain (from placing first or from placing second) is somewhat

close across bidders. As in Fang (2002), auctions inspire greatest competition among

bidders when valuations are similar; but here, it may be enough to have similar

valuations of second place, even if the valuation for first place is quite uneven.

In terms of efficiency, the results are less definitive. The lottery can offer small

efficiency gains over the auction when the net gains are quite similar, but for most

parameter values, the auction generates a larger total welfare. A significant exception

arises whenever the seller optimally excludes the highest valuation bidder from the

auction. While this generates more revenue than either the lottery or the auction

without exclusion, it guarantees that the good will be allocated to bidders who value

it much less. If so, the lottery performs much better since the high valuation bidder

wins first priority with high probability.

The study of all-pay auctions initially examined competition for a single prize

among various participants who may have the same (Hillman and Samet, 1987) or

differing (Hillman and Riley, 1989; Baye, et al , 1996) valuations of the prize. Others

(Clark and Riis, 1998; Barut and Kovenock, 1998; Siegel, 2009) have extended the

all-pay auction to contests with multiple prizes; still, each prize is indivisible and each

4Taylor, et al (2003) undertake a related study with m identical, indivisible units offered to
bidders with unit demand. However, their lottery consists of randomly selecting m participants
with equal probability, without any effort on their part. Also, their auction has bidders valuations
as private information. Quite the opposite of our result, they find that the lottery is more efficient
than the auction when consumers are more homogeneous.
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agent can win no more than one prize. Our paper is the first analysis of an all-pay

auction in which agents may choose varying amounts of a perfectly divisible good.

Our paper also contributes to a recent strand of the all-pay literature on rank-order

spillovers. Baye, et al (2009) consider two-person contests in which both the winner

and the loser can be directly affected by the bid of the other person. Most closely

related is Klose and Kovenock (2011), which examines an n bidder all-pay auction

where each bidder’s payoff is affected by the identity of the winner. Our model is

more general in that the payoff to a bidder in third place depends on the identities

(e.g. purchases) of first and second place; in addition, the value of second and third

place can differ in our model, even when the first-place winner is held constant. On

the other hand, our model is set in a service-order environment, which restricts the

type of payoffs that may occur, while Klose and Kovenock allow for a wider variety

of spill-overs between first place and the remaining competitors.

This paper is also related to priority auctions (surveyed in Hassin and Haviv,

2002, Sec. 4.5). These are queuing models in which a server must determine an order

in which to serve randomly-arriving customers, who can acquire an early position in

the queue through their bids. Typically, all of the customers can eventually be served;

the purpose of a higher bid is to reduce delay by advancing ahead of other bidders.

While these queuing processes differ from our deterministic environment with a

fixed number of customers and a short supply, there are some parallels in the results.

For instance, if customers are identical, bidding reduces their expected welfare to zero,

as long as some of the customers choose not join the queue in equilibrium (because

they are indifferent between the expected cost of waiting and the eventual benefit

from service), and this outcome is efficient. However, unlike our model, the priority

auction is also efficient even if the benefit from service or cost of waiting varies across

customers, because the lowest benefit or highest cost customers are the ones who

abstain. In our environment, these customers still participate in the bidding and

occasionally displace higher benefit customers.

We assume that bidders are fully informed of each others’ preferences. Bidders

also know beforehand the available supply and the per-unit price charged once a per-

son gains access. The assumption of full information, while not common in first- and

second-price auctions, is frequently used in all-pay auctions (including all auction arti-

cles mentioned above), as well as in other models of rent seeking. As commonly occurs

in a complete-information auction environment, agents bid using mixed strategies in
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equilibrium. We also assume that resale is not possible.5

The paper proceeds as follows: Section 2 defines the environment and mechanism

for the auction for priority access. Section 3 then proves existence of equilibrium

and characterizes its basic features. In Section 4, we present the full solution in

several special cases, including n homogeneous agents and 2 or 3 heterogeneous agents.

Section 5 defines the lottery for priority access and compares its equilibrium outcomes

to the auction outcomes from the preceding section, and section 6 concludes and offers

alternative applications. All proofs appear in the Appendix.

2 Auction Model

A seller has S units of a perfectly divisible commodity, to be sold among n buyers

via an auction for priority access. Each buyer submits a sealed bid bi, and these are

simultaneously opened by the seller. The buyer with the largest bi is then allowed to

purchase any amount qi (up to S units of the good) at an exogenously set price p ≥ 0

per unit. If any supply is available after this purchase, the buyer with the second

largest bid is allowed to purchase from the remaining units at the same price p. This

continues until supply is exhausted. Ties are broken randomly.

All players forfeit their bid, regardless of whether they obtain any supply (an all-

pay auction). The model is only slightly more complicated if only those who obtain

some supply are required to pay (a pay-as-bid auction); we do not pursue that analysis

here. The bid is constrained to be positive but less than an exogenous maximum M .6

Buyers are assumed to have preferences that are quasi-linear with respect to

money: ui(qi, bi) = vi(qi) − pqi − bi. We assume vi(0) = 0, and that qi ≥ 0. More-

over, marginal utility is diminishing in the auctioned commodity: v′′ < 0. Thus,

we can define di(p) ≡ arg maxqi ui(qi, bi) as the quantity buyer i would purchase at

price p if supply is not binding.7 With the assumed utility, if available supply is less

5If resale were possible, the highest bidder would always purchase the entire supply then sell
any portion that he does not wish to consume. The constraints on method of resale are of critical
importance, though. If this first winner can only resell under the same rules as the original seller
(that is, a constant per unit price of p, while auctioning the order of service), the outcome would be
virtually the same. If the first winner has greater latitude in methods of resale, the outcome could
vary greatly; but it also begs the question as to why the original seller was denied this latitude.

6In making use of this model, one would typically set M sufficiently large to never be binding,
such as larger than the maximum value of winning. For existence purposes, it is convenient to have
a bounded space of actions.

7Note that di is independent of bi, which is precisely the purpose of assuming quasi-linear utility.
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than di(p), the consumer would optimally choose to purchase all the available supply.

These preferences are commonly known among all buyers, allowing each to correctly

predict how much supply will remain after a given order of buyers are served.

Thus, for a given profile of bids b = {bi}ni=1, if agent i is not tied with another

agent (bi 6= bj for all j 6= i), he will obtain:

qi(b) ≡ min

di(p), max

0, S −
∑

j: bj>bi

dj(p)


 . (1)

If he is involved in a tie, the tied bidders are randomly ordered (with equal probability

on each permutation) and their demand is filled in order. Thus, if k agents (including

agent i) have a bid of bi, then with probability 1
k!

, the outcome is:

qi(b) ≡ min

di(p), max

0, S −
∑

j: bj>bi

dj(p)−
∑

j: bj=bi,
π(j)<π(i)

dj(p)


 , (2)

where π(·) is a permutation that creates a strict order of the k tied bidders. Note

that the tie could be inconsequential, meaning that qi(b) is the same for any of the

permutations. For instance, qi(b) = di(b) for all permutations when there is sufficient

remaining supply for all the tied agents. Similarly, if all supply has been exhausted

by agents with bids higher than bi, qi(b) = 0 for all permutations.

Typically, there are no pure strategy equilibria for this game, as will be shown

later. Thus, we define each bidder’s mixed strategy as a probability measure µi on

[0,M ]. By way of notation, let Bi be the support8 of µi. Also let B−i be the cross

product of the strategy support of each agent besides i, and µ−i(b−i) be the product

of µj(bj) for all j 6= i.

The Nash equilibrium of this game is a strategy profile µ∗ such that for all i, any

bid in the support B∗i maximizes i’s expected utility, given other players’ strategies

µ∗−i. That is, for all b∗i ∈ B∗i and all b̂i ∈ [0,M ],

Otherwise, the sunk cost of the bid could reduce wealth and affect demand; eliminating these wealth
effects greatly simplifies bidding strategies.

8The support of a probability measure µi is the set Bi such that µi(Bi) = 1 and µi(B′) < 1 for
any proper closed subset B′ ⊂ Bi.
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EUi(b
∗
i , µ

∗
−i) ≡

∫
B∗−i

(
vi(qi(b−i, b

∗
i )) − pqi(b−i, b

∗
i )
)
dµ∗−i(b−i) − b∗i

≥
∫
B∗−i

(
vi(qi(b−i, b̂i)) − pqi(b−i, b̂i)

)
dµ∗−i(b−i) − b̂i.

3 Existence and Characterization of Equilibrium

As is often the case for games with continuous action spaces, this auction typically

does not have a Nash equilibrium in pure strategies. This is because payoffs can be

discontinuous if multiple agents choose the same bid. By bidding an infinitesimal

amount more, an agent can avoid the tie and ensure that he gets first access to the

goods — and if supply is constraining, this creates a discrete jump in utility. This is

proven formally in Proposition 2, Claim 2. However, we can prove existence in mixed

strategies in full generality.

Proposition 1. For any p ≥ 0, a mixed strategy equilibrium exists.

Beyond existence, we can also significantly narrow the set of potential equilibria

by establishing (in the following proposition) key features of equilibrium strategies.

Indeed, these observations are quite useful as one seeks to calculate such an equilib-

rium, as is done in Section 4.

Proposition 2. If µ∗ is an equilibrium strategy in an auction for priority access,

1. For all i, B∗i ⊂ ∪j 6=i B∗j ∪ {0}.

2. For all i, there is no bi > 0 such that µ∗i ({bi}) > 0.

3. ∪i B∗i is a connected set, and 0 ∈ ∪i B∗i .

4. For all i, EUi(µ
∗) ≥ vi(0).

5. If µ∗i ({0}) > 0 for some i and S ≤
∑

j 6=i dj(p), then EUi(µ
∗) = vi(0).

6. If µ∗i ({0}) > 0 for some i and
∑

j 6=i dj(p) < S ≤
∑

j dj(p), then

EUi(µ
∗) = ui

(
S −

∑
j 6=i

dj(p), 0

)
.
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7. If maxB∗i = max∪j B∗j for some i, then

EUi(µ
∗) = ui (min{di(p), S},maxB∗i ) .

The first claim establishes that an agent will not include a particular bid in his

support unless it also appears in the support of some other player. There is no reason

to do so, since in such a case, one could reduce his bid without changing the expected

amount of supply available for purchase. The exception, of course, is 0, since it is not

possible to reduce the bid any further.

The next observation is that atoms9 never occur except possibly at zero. If a

consequential tie were to occur with positive probability (i.e. two agents have an

atom on the same bid), at least one of them would strictly prefer to break the tie.

If consequential ties almost never occur, two possibilities exist. On the one hand,

it could be that if the agent with an atom reduced his bid, he would obtain the

same purchases with the same probabilities but lower bid cost. If not, there must be

some other agent bidding just below the atom, whose outcome depends on his order

relative to the first. But this second agent can do strictly better by raising his bid

just above the atom, for then he reduces his chances of purchasing behind the first

while incurring an infinitesimal increase in bid cost.

An immediate corollary of the second claim is that no pure strategy equilibrium

exists. The only exception is when all agents set µi({0}) = 1, and that could only be

sustained if supply is weakly greater than aggregate demand.

The third claim states that there can be no gaps in the aggregate support; oth-

erwise, agents bidding just above the gap would do well to reduce their bid inside of

the gap. By the same reasoning, the aggregate support always includes 0.

The fourth claim identifies that equilibrium expected utility is bounded below by

autarky. This is because agents are always free to bid nothing, bi = 0. The worst that

can happen in such a case is that the agent comes in last and obtains nothing. Note

that this claim only applies to expected utility; once the randomization on mixed

strategies occurs, agents may find themselves having a high bid yet still being beaten

by some other agent and left without any opportunity to make a purchase. Yet other

ex-post realizations may place the agent first in line in spite of a small bid.

The last three claims are particularly useful in computing equilibria, since they

9An atom of a measure µi occurs at strategy bi if µi({bi}) > 0.
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pin down an agent’s utility relative to certain aspects of his strategy. Whenever

an atom occurs in his mixed strategy, his expected utility is the same as if he bid

nothing and won exactly the leftovers after all others are served (or zero if there

is insufficient supply to have leftovers). On the other hand, anyone whose support

includes the highest bid receives an expected utility as if he always wins the first

priority (claiming either his full demand or, if not possible, the entire supply) and

bidding his highest bid for certain.

4 Examples

To illustrate the equilibrium behavior and provide more detailed analysis, we now

examine several analytically tractable special cases. Our goal is to demonstrate key

elements that are common to any solution (including numerical solutions for envi-

ronments with more bidders or greater heterogeneity), as well as to demonstrate the

process of computing the equilibrium strategies.

The real innovation of our model occurs with 3 or more heterogeneous bidders,

since then bidders must consider not only whether they are outbid but by whom. Even

so, we begin by considering the cases of n homogenous bidders and of 2 heterogeneous

bidders, which can be analyzed by adapting prior results in the literature. These

highly tractable cases serve as a benchmark, providing useful intuition for threads

shared in common with the case of three heterogeneous bidders, while also providing

contrast for the distinct behavior in that more complex environment.

4.1 n Homogeneous Bidders

Suppose all agents have the same underlying utility function, ui. In this environment,

agents have equal demand d for the good; thus, the highest k bidders, where k · d ≤
S < (k + 1)d, will receive their full demand. The k + 1th bidder will receive the

leftovers, and all others will receive nothing.

With the assumption of homogenous bidders, our model can be translated into

the environment of Barut and Kovenock (1998). They present an all-pay auction for

multiple indivisible prizes, and all agents agree on the value of the various prizes.

Here, the top k bidders receive a prize which everyone agree is worth w ≡ v(d)− pd.

The k + 1th prize is valued by all bidders at x ≡ v(r) − pr where r ≡ S − kd, and
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all others receive a prize of v(0), which we normalize to 0. An application of their

results provides the following characterization. From this point on, we express the

equilibrium mixed strategies as cumulative distribution functions, Fi(b), rather than

probability measures µi.

A symmetric equilibrium always exists,10 in which all agents play the same mixed

strategy. If S < d, then only the first place bidder receives any amount of the good.

The unique equilibrium strategy, expressed as a cumulative distribution function, is

Fi(b) =
(
b
x

) 1
n−1 for all i, which has support B∗i = [0, x].

If a larger supply is available (1 ≤ k < n− 1), the symmetric equilibrium strategy

Fi(b) is implicitly expressed as:

b = x

(
n− 1

k

)
Fi(b)

n−k−1(1− Fi(b))k + w
k−1∑
m=0

(
n− 1

m

)
(1− Fi(b))m(Fi(b))

n−m−1,

where the parenthetical element represents the binomial coefficient of n− 1 choose k.

This will have a support of B∗i = [0, w] and has no atoms. With a large enough supply

that k = n − 1, the equilibrium strategy is represented by Fi(b) = 1 −
(
w−x−b
w−x

) 1
n−1

for all i, which has a support of B∗i = [0, w− x]. Figure 1 illustrates this equilibrium

strategy for three homogeneous bidders, for various levels of S.

Applying Claim 7 of Proposition 2, note that EUi(µ
∗) = 0 (or EUi(µ

∗) = x if

k = n− 1). The expected expenditures on bids is R = kw+x (or R = (n− 1)(w−x)

if k = n− 1).

While this solution in the homogenous case is not novel, its application to our

environment is. We now consider the efficiency and revenue implications of an auction

for priority access.

One might address allocative efficiency on two levels. If we take as given that the

quantities are split into k packages of size d and one of size r, then since everyone

has the same utility from these packages, any distribution of them is equally efficient

(i.e. on the extensive margin). However, if we allow alternative divisions of the S

units, this allocation is certainly inefficient (i.e. on the intensive margin) because

v(·) exhibits diminishing marginal utility; agents who end up with nothing after the

10When 1 ≤ k < n−1, there are also a continuum of equilibria with asymmetric mixed strategies,
where our identical agents nonetheless employ differing mixed strategies. We refer the reader to
Barut and Kovenock (1998) for a full characterization of these strategies. Indeed, despite their
complexity, they result in the same expected utility and expenditure as the symmetric case, and
thus add little to the performance of the auction.
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Figure 1: Equilibrium Bidding Strategies, 3 Bidder Example

Notes: These plots depict CDF of the mixed strategy employed by all three bidders in the
symmetric equilibrium, depending on the amount of good available. The three panes show
when there is only enough supply for 1st place (S ≤ d), for 1st and 2nd place (d < S ≤ 2d),
or some for all three (2d < S ≤ 3d). We fix w = 50, and vary the utility from leftovers:
x = 10 (solid), x = 25 (dashed), and x = 50 (dotted).

auction will value a marginal unit of the good higher than those who obtained d units.

Also note that since EUi = 0, rent is fully dissipated when S ≤ (n− 1)d. In other

words, if at least one agent will be unable to make purchases, they will all bid such

that ex-ante, they are indifferent between participating in the auction or not.

Thus the auction for priority access implements a two-part tariff. The traditional

two-part tariff requires the seller to know the consumer surplus of his customers, lest

he charge too high an entry fee and exclude them from the market. Here, the seller

can be ignorant of consumer surplus, as competition among bidders will endogenously

determine the right entry fee.

Indeed, the seller could potentially earn more profit under the regulated price, p,

than the market clearing price, pmkt. This occurs when (pmkt − p) · S < R. In the

case of linear demand, we can establish a more concrete result: the auction will be

more profitable as long as at least half the market is still served.

Proposition 3. Assume x = 0 and each bidder has linear demand for the good. Then

the auction for priority access generates more revenue than the market clearing price

if and only if k > n
2
.

The assumption that x = 0 (there are no leftovers for the k+1th bidder) is merely

for expositional convenience and has little effect on the result.

One should note that this establishes the best case scenario. As we introduce
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heterogeneity, the auction will not achieve full rent extraction (which is also true of

two-part tariffs in general). Even so, it is interesting that the artificially low price

could benefit the seller, subverting the intention of the policy maker who presumably

imposed the price control to reduce costs to consumers. In fact, the seller needs the

price control as a commitment device. Suppose the seller were to voluntarily post a

price below market clearing (in hopes of generating an auction for priority access).

He would face the constant temptation to raise it when buyers with unmet demand

offer higher prices; anticipating this, buyers would prefer to abstain from the auction

and offer a higher price.

Throughout, we have treated S and p as exogenous, but we can ask what would

be the most beneficial values (to the seller) for these parameters. Note that auction

revenue is maximized when S = (n − 1)d; that is, one should include all bidders in

the auction, but supply enough to serve all but one of them. Moreover, if p is equal

to marginal cost, total welfare (per customer served) is maximized; and since all of

this surplus is captured by the seller, this is also profit maximizing.

At these values, the auction gives nearly the same result as the Oi two-part tariff

(Oi, 1971) with two exceptions: first, one client is left unfulfilled here, where none

would be under the Oi Tariff (which seeks full efficiency by excluding no one). Second,

the entry tariff in our model is not a fee explicitly set by the monopolist, but rather

endogenously through the competition among bidders.

4.2 2 Heterogeneous Bidders

The auction for priority access becomes even more interesting when bidders differ in

their utility from and/or demand for the good. We begin by providing a complete

analysis of two-person auctions. Our solution can be considered a minor generalization

of a two-bidder all-pay auction of a single indivisible good, with the alteration that

losing need not have zero value. Again, the solution is not novel (it can be seen in

Baye, et al , 2009), but its application to our environment provides further insight

in the interpretation of efficiency and revenue results which are present (though less

obvious) in the more general case.

The unique mixed strategy equilibrium can be characterized in terms of each

agent’s value of being first or second. We use the following notation to represent
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these:

wi ≡ vi(qi)− pqi where qi = min{di(p), S}

xij ≡ vi(qij)− pqij where qij = min{di(p),max{0, S − dj(p)}}

Thus, wi represents i’s utility from realized consumption when he has first priority,

and xij when he has second priority, having been beaten by bidder j. While the iden-

tity of j is obvious for the two-person case, we introduce this notation in preparation

for the three-person example. Note that wi ≥ xij. On the other hand, comparisons

between wi and either wj or xji could go either direction. Without loss of generality,

we will assume that w1−x12 ≥ w2−x21; if this were not the case, we could just relabel

the two agents. The difference wi − xij indicates the net gain to i from consuming

first rather than second.

Proposition 4. The unique equilibrium is F1(b) = b
w2−x21

and F2(b) = b+w1−x12−w2+x21

w1−x12
,

resulting in EU1 = w1 − w2 + x21 and EU2 = x21.

Note that both distributions share the same support [0, w2 − x21], and agent 2

has an atom at 0. In effect, the agent who has more to lose by being second (bidder

1) bids more aggressively: his mixed strategy first-order stochastically dominates the

other bidder’s. Indeed, he is more likely to win the first priority: his bid is higher

than agent 2’s with probability 1− (w2−x21)
2(w1−x12)

, and this becomes more likely the larger

the difference in net gains.

This has the flavor of an efficiency result: the total utility generated from con-

sumption is larger when agent 1 consumes first than when agent 2 does (i.e. w1+x21 ≥
w2 + x12), and that outcome is more likely the bigger this difference. However, the

less efficient outcome always occurs with positive probability. Moreover, as with ho-

mogenous bidders, the outcome is always inefficient on the intensive margin, since

marginal utilities will not be equal even when 1 does consume first.

It is interesting to note that agent 1 may not fare better than agent two in equilib-

rium; when w1 < w2, agent 2 receives higher expected utility. For instance, this could

occur if agent 2 gets a lot of utility from the good whether buying first or second, but

agent 1 gets very little utility from buying second, perhaps because agent 2 exhausts

the available supply.

As with homogeneous bidders, the auction implements a form of second degree

price discrimination, with two twists. First, note that rents are not fully extracted
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(even if the losing bidder is unable to purchase anything, xij = 0). This is because

the bidders only compete away the smaller of the two net gains. This can be seen

in the expected utility of the two bidders: wi − (w2 − x21). This similarly occurs in

standard two-part tariffs with heterogeneous consumers.

Second, as noted above, the ex-post total surplus depends on who is served first,

creating inefficiency whenever bidder 2 wins. Thus, rather than merely transferring

surplus, the auction introduces some deadweight loss. The expected bid expenditures

from the two agents will be R = (w2−x21)
2

+ (w2−x21)2

2(w1−x12)
. This revenue always increases

with w2− x21, and decreases with w1− x12 up until the two net gains are equal. The

latter fact is somewhat surprising, but as bidder 1 has more to gain from winning and

thus has a larger expected bid, his opponent is discouraged from bidding as much,

which reduces total revenue.

4.3 3 Heterogeneous Bidders

With more than two bidders, heterogeneity among bidders introduces another com-

plication: bidders are concerned not only about how many people place higher bids,

but also which bidders place those bids. After all, the residual supply for second place

may depend on who is in first place. While enriching behavior, this added feature

also hampers any attempt to characterize all equilibria. Even with just three bidders,

the precise solution depends on a comparison of the various bidder payoffs, resulting

in many cases.11 Moreover, for some of these, the solution can only be numerically

solved.

For brevity, we select a three-bidder example that provides a closed-form solution

and yet is representative of the rich behavior possible with three bidders. We employ

the same notation as the preceding two-person example. Assume that there are two

types of bidders, with one of type 1 and two of type 2. The type 1 bidder will exhaust

the entire supply, even if he places first. A type 2 bidder does not exhaust the supply

if she places first, but will if she places second (beaten by the other type 2 agent).

Thus, x21 = 0, as is the utility to any agent from placing third.

11This also occurred in Klose and Kovenock (2011), limiting them to present several representative
examples. Their three-bidder environment does not directly map into ours, as they assume payoffs
to the second- and third-place bidder are only affected by the identity of the first-place bidder. This
cannot address the example we present here, in which third place is strictly less desirable than second
place because the second-place bidder will exhaust the supply.
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Equilibrium bid strategies will depend on parameters, and need not be unique.12

For instance, if w2 ≥ w1 + x22, an equilibrium exists such that bidder 1 completely

abstains, while both type 2 bidders behave as they would in the homogenous two-

person auction. Similarly, if w1 ≥ w2 + x12, an equilibrium exists where one of the

type 2 bidder abstains (i.e. F2(b) = 1 for all b ≥ 0), while the remaining bidders

behave exactly as in the heterogneous two-person example.

Note that this latter solution is an asymmetric equilibrium, in that the identical

type 2 bidders employ different strategies. These asymmetries are often part of an

equilibrium with more than 2 heterogeneous bidders; indeed, a symmetric equilibrium

may not exist for a particular set of parameters.

Rather than present all equilibria, we focus on a particularly tractable example

in which all three participants share a common support of [0, w2], and both type 2

agents employ the same strategy. In Appendix A.8, we sketch the process by which

one can solve for any of the equilibria (whether analytically or numerically).13

Proposition 5. Assuming x21 = 0, w1 ≥ w2 and 2(w1 − x12) ≥ w2 − x22, then

F1(b) =
b(w1 − 2x12)

(w2 − x22)
(
−x12 +

√
x2

12 + (w1 − 2x12)(b+ w1 − w2)
)

+ x22(w1 − 2x12)

F2(b) =
−x12 +

√
x2

12 + (w1 − 2x12)(b+ w1 − w2)

w1 − 2x12

,

for b ∈ [0, w2] constitutes an equilibrium strategy profile, producing EU1 = w1 − w2

and EU2 = 0.

One can compute a similar equilibrium without the imposed assumptions, but the

expression becomes more cumbersome. The last assumption in particular is needed

to make a symmetric equilibrium possible; without it, the type 2 bidders will have

to employ distinct strategies (with one placing no weight on an interval (0, z), where

z ≤ w2).

12The multiple equilibria may not be revenue equivalent, either. Baye, et al (1996) demonstrate
this for an auction of a single indivisible prize among heterogeneous bidders.

13Other equilibria are more complicated to express and do not add much insight. They tend to be
an intermediate case between the equilibria presented, with some agent abstaining for some portion
of the aggregate support. In numerous numerical computations, the revenue and efficiency properties
of these other equilibria also lay between the full abstention equilibrium and the full participation
equilibrium presented.
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Note that the type 2 agents have an atom at b = 0 as long as w1 > w2. Also, one

might expect bidder 1 to bid more aggressively (F1(b) < F2(b) for all b), but this is

not always the case. If 2(w1 − x12) < 2w2 − x22, bidder 1 places less weight on high

bids than bidder 2 does. In essence, x12 is large enough that bidder 1 is willing to

accept second place and compete less aggressively for first.

In light of this, one might reasonably ask: could the seller increase revenues by

excluding one of the bidders? In an all-pay auction of a single, indivisible prize,

Baye, et al (1993) answered yes. For instance, in a three person auction, if two

bidders have equal valuations while the third’s is strictly higher, the latter should

always be excluded. They label this effect the exclusion principle.

In our divisible-good environment, however, the exclusion principle must be al-

tered. When x22 is near zero, the seller increases revenue by excluding bidder 1, who

values first place and possibly even second place more than the remaining two bid-

ders. However, for moderate values of x22 and x12, excluding one of the type 2 bidders

raises more revenue. This can occur even though w2 < w1 and x22 < x12; that is,

bidder 1 clearly values the prizes more, yet another bidder is excluded. Moreover, for

larger values of either x22 or x12, more revenue is raised by excluding none of three

bidders.

Intuitively, the seller’s choice to exclude is a question of whether he is deriving

more revenue from competition for first place or competition for second place. When

the value of second place is low, the original exclusion principle applies because bidders

are almost exclusively motivated by their desire for first place. When the value of

second place is high, it is as important to competition as first place; indeed, by

excluding any bidder, the remaining two would bid less aggressively since the loser

still receives a significant prize. This echos the result for homogenous bidders, where

the seller maximizes revenue by ensuring that exactly one bidder will obtain nothing.

The intermediate case is also interesting. Here, the type 2 bidder is significantly

more aggressive against a lone opponent of type 1 than she would be against a lone

opponent of type 2 or against both type 1 and type 2. This is because type 2 must

place first to win anything, since bidder 1 absorbs the entire supply. If the other type

2 bidder is included, the additional competition for first place is mitigated by the fact

that second place will sometimes yield positive utility.

Expected revenue in this three-person example is a lengthy expression and is not

useful for analytical comparisons; thus we illustrate these results in some representa-
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Figure 2: Exclusion in Auctions for Priority Access

Notes: The shaded regions indicate parameter values for which auction revenue is highest
by excluding the Type 1 bidder, one of the Type 2 bidders, or excluding None. The white
NA region indicates parameters for which the example equilibrium does not exist. In all
cases, we set w2 = 50.

tive numerical examples. Figure 2 illustrates several cases. Note that as w1 increases

relative to w2, the region of parameter space in which exclusion increases revenue is

larger.

This three-bidder equilibrium also provides a nice setting to illustrate a key con-

cern in auctions for priority access: a type 2 bidder in second place is greatly affected

by whether he was beaten by the type 1 bidder (therefore getting 0) or the other type

2 (thus getting x22). Compare this equilibrium to the symmetric equilibrium in the

environment where all three bidders are of type 2. There, they would employ a mixed

strategy (depicted in Figure 1, Panel 2) with the same support, but no atom:

F̃2(b) =
−x22 +

√
x2

22 + b(w2 − 2x22)

w2 − 2x22

.

Comparing this equilibrium to the preceding, type 2 bidders place are more reluctant

to bid when faced with the prospect of being shut out by the type 1 bidder. Indeed,

when w1 − x12 ≥ w2 − x22, the strategy versus a type 1 and a type 2 is first-order

stochastically dominated by the strategy versus two type 2 bidders: F2(b) > F̃2(b)

for all b. Even so, the solution with heterogeneous bidders still implements a form of
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second degree price discrimination, though the heterogeneity somewhat dampens its

effectiveness.

5 Comparisons to Lotteries for Priority Access

We now contrast the auction for priority access to the proportional contest, which is

frequently used in models of rent seeking. In this environment, each bidder chooses

a bid bi, and wins the contest with probability biP
j bj

. In this sense, the bid is like

a purchase of lottery or raffle tickets, where the participant can improve his odds of

winning by buying more tickets.

Of course, in our environment, there is not a single prize to win. However, this

same mechanism can be used to establish an order of priority.14 After each agent

chooses a bid, the first access is awarded to i with probability biP
j bj

. If any supply

remains, the second priority is awarded to k with probability bkP
j 6=i bj

, assuming i won

the first round. This continues until either the supply or the bidders are exhausted.

As before, bids are sunk; an unlucky participant pays his bid even if he is unable to

purchase any of the good.

The key difference is that priority order is no longer a deterministic function of

bids, as it is in the auction. In the lottery, a larger bid produces a proportionately

larger probability of getting first access, but does not guarantee it. Another difference

is that existence of equilibrium is not in question, as payoffs are continuous. In fact,

lotteries often result in a unique pure strategy equilibrium.

We present solutions for the same cases analyzed in Section 4, and compare the

results to their auction counterparts. Fang (2002) performed a similar comparison in

the context of a single indivisible prize auctioned among heterogeneous bidders; this

is most closely related to our two-person example, except that the value of second

place can be positive in our model.

5.1 Lottery with n Homogeneous Bidders

We focus on symmetric strategies; others can sometimes exist but produce dramat-

ically less revenue. Let bi denote i’s bid, while bj denote the bid used by all other

14Clark and Riis (1996) introduced this process of using one bid in a Tullock success function to
allocate k identical, indivisible prizes among n bidders with unit demand.
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agents. The expected utility of agent i is:

EUi(bi, bj) = w

(
k−1∑
s=0

bi
bi + (n− s− 1)bj

s∏
t=1

(
1− bi

bi + (n− t)bj

))

+x
bi

bi + (n− k − 1)bj

k∏
t=1

(
1− bi

bi + (n− t)bj

)
− bi.

The first summation represents the k opportunities that agent i has to gain access

while there is still enough supply to satisfy his demand. Note that, conditional on

having lost on the first s ≤ k draws, the probability of winning on the s + 1th

draw, bi
bi+(n−s−1)bj

, is increasing in s. This is because those who have already been

given access are removed from the subsequent draws. The second term indicates the

probability of being selected for exactly the k + 1th priority.

Proposition 6. The symmetric equilibrium of a lottery for priority access with n

homogeneous bidders is:

b∗i =
x− w + ((n− k)w − x)

∑k
t=0

1
n−t

n

for all i, with EU∗i = kw+x
n
− b∗i and bid revenue nb∗i . This always produces more

expected utility and less expected revenue than the auction for priority access.

The lottery is not as effective as the auction at extracting rent when bidders are

identical. The same comparison of auction versus lottery holds in Fang (2002) for a

single indivisible prize. Intuitively, in the lottery, the awarding of priority order is not

deterministic based on the bids; this element of randomness decreases competition

among participants.

On the other hand, note that since pure strategies are employed, lottery bid

revenue is deterministic. Thus, a seller might favor the lottery over the auction if he

is sufficiently risk averse.

5.2 Lottery with 2 Heterogeneous Bidders

Again, we consider a two-person environment using the same notation as in Section

4.2. As before, let w1 − x12 > w2 − x21. Bidder i has expected utility:
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EUi(bi, bj) = wi
bi

bi + bj
+ xij

bj
bi + bj

− bi.

This game has the following unique Nash equilibrium; equilibrium expected utility is

reported in the proof.

Proposition 7. The unique equilibrium of a lottery for priority access with 2 bidders

is:

b∗1 =
(w1 − x12)

2(w2 − x21)

(w1 − x12 + w2 − x21)2
and b∗2 =

(w1 − x12)(w2 − x21)
2

(w1 − x12 + w2 − x21)2
,

with bid revenue R = (w1−x12)(w2−x21)
w1−x12+w2−x21

. This is always less efficient than the auction,

and produces more revenue if and only if (
√

2− 1)(w1 − x12) > w2 − x21.

Regarding efficiency, the probability that agent 1 receives first priority after the

lottery is w1−x12

w1−x12+w2−x21
; thus, a larger difference in the net gain of the two bidders

will create a higher probability of the more efficient ordering. However, an auction

for priority access will achieve that outcome with even higher probability:

1− (w2 − x21)

2 (w1 − x12)
>

w1 − x12

w1 − x12 + w2 − x21

⇐⇒ w1 − x12 > w2 − x21,

which holds by assumption. This demonstrates that even though mixed strategies are

employed in the auction, the atom in agent 2’s bid skews the outcome so that agent

1 wins more frequently than in the lottery.

A comparison of bid revenues shows that the lottery generates more than the

auction if and only if (
√

2−1)(w1−x12) > w2−x21. In words, if bidder 2’s net gain is

significantly smaller (i.e. at least 58% smaller) than bidder 1’s net gain, the lottery

will incite greater competition than the auction. Indeed, while the auction’s revenue

strictly decreases as w1−x12 increases, the lottery’s revenue strictly increases. In both

mechanisms, bidder 2 backs off as w1 − x12 becomes larger. In the auction, bidder

1 does not change his strategy as his net gain increases, though he does increases

his bid in the lottery. Intuitively, the random draw in the lottery draw encourages

greater effort from bidder 1 to secure first priority. In a single prize contest (i.e. when

x12 = x21 = 0), Fang (2002) reaches the same conclusion.

Finally, a comparison of expected utility reveals that bidder 2 fares strictly better

under the lottery, rather than the auction. The comparison is ambiguous for bidder

1, who prefers the lottery whenever (w1 − x12)
3 > (w1 − w2)(w1 − x12 + w2 − x21)

2.
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In particular, if w1 < w2, this will always hold.

5.3 Lottery with 3 Heterogeneous Bidders

We now turn to the same three-person example used in Section 4.3. Solving for the

lottery proceeds as before; however, the equilibrium solution must obtained numeri-

cally. We focus on the symmetric equilibrium, in which the type 2 bidders employ the

same strategy.15 Summarizing many numerical computations, our goal is to comment

on three issues: exclusion, revenue, and efficiency.

First, excluding bidders from the lottery almost never increases revenue. In the

auction mechanism, exclusion can sometimes help when aggressive bidding by one

agent would cause the others to back off; thus, excluding that aggressive bidder can

increase competition from the other two. In a lottery, however, bidders are less

sensitive to each others’ bids, since a low bid can still win over a high bid with some

probability. The only exception occurs when w2 is roughly two orders of magnitude

smaller than w1. Fang (2002) finds, in a single-prize setting with heterogeneous

bidders, that exclusion can never increase revenue.

Second, the comparison of lottery and auction revenue bears a strong resemblance

to the two-bidder example. The auction (using exclusion where beneficial) earns

strictly more revenue than the lottery when w1 is close to w2. As these grow farther

apart, a region of (x12, x22) parameters in which the lottery will dominate emerges

and grows, which is illustrated in Figure 3. Note that this region involves high x22

and low x12 values. As before, the auction performs best when the agents are more

similar in their valuations; remarkably, this is true even when the value of second

priority is close, even if the value of first priority is not.

Finally, efficiency in this environment clearly depends on the four parameters,

but we compute the expected total welfare (expected utility plus expected revenue)

for both the lottery and the auction (employing the revenue-maximizing exclusion

where useful). The results are depicted in Figure 4. The auction produces higher

surplus in the intermediate range of x22, while the lottery can be more efficient for

very low or very high values of x22. For the low values, this essentially coincides with

where the auction would exclude bidder 1; this ensures an inefficient outcome since

w1 > w2 + x22 and/or w2 + x12 > w2 + x22. The lottery performs better because it

15There are typically two other solutions to the system of first-order conditions, but the asymmetric
solutions produced lower revenue for all parameters we attempted.
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Figure 3: Revenue Comparison: Three Bidder Example

Notes: The shaded regions indicate parameter values for which the Auction or Lottery earn
greater expected revenue. For w1 < 80, the auction always dominates. The white NA region
indicates parameters for which the example equilibrium does not exist. In all cases, we set
w2 = 50.

includes bidder 1. If no exclusion occurred, the auction would be more efficient than

the lottery in this low range.

For the higher region, the efficiency gain of the lottery over the auction is minor

— less than one percent, compared to 5 to 10% gains in the moderate region or even

50% gains in the low region. This is not surprising since all three outcomes (w1,

w2 + x12, or w2 + x22) are nearly the same in this high region.

6 Conclusion

Contests for priority access provide a method of allocating a good in short supply

among potential buyers, using the bids to establish an order of service. Since there is

still a marginal cost of procurement even after access is awarded, the first customer

may not exhaust supply. We have shown that these contests can be effective methods

for the seller to extract consumer surplus from his patrons, implementing a two-part

tariff without the seller needing to know a consumer’s surplus. For instance, if the

landlord of a rent-controlled property can establish competition among prospective

tenants via gifts or key money, he could appropriate much of the surplus in filling a

vacancy, perhaps with more profit than in an unregulated housing market.
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Figure 4: Efficiency Comparison: Three Bidder Example

Notes: The shaded regions indicate parameter values for which Auction or Lottery generate
higher total welfare. The white NA region indicates parameters for which the example
equilibrium does not exist. In all cases, we set w2 = 50.

In all-pay auctions for a single indivisible good, the seller can increase revenue

by excluding a bidder who has the strictly highest valuation for the good. In an

auction for priority access (with a perfectly divisible good), this exclusion principle

must be altered. In our three-person example, the seller only excludes a bidder if

placing second is relatively unimportant to bidders’ strategies. Moreover, there are

situations in which excluding one of the bidders with lower valuations generates

greater revenue. This occurs because these bidders will compete more aggressively

when their only chance of obtaining any good is to place first (when only facing the

high valuation bidder), compared to having a chance for leftovers in second place

(when facing both a high and a low valuation bidder).

From an efficiency standpoint, contests for priority access are doomed from the

start in one sense. Some agents will be left without any of the good, even though their

marginal utility from consumption is well above those who did procure a portion. Of

course, this is where competitive markets excel, since prices align marginal incentives.

These incentives do not arise in our auction or lottery because bids are a fixed cost,

reflecting total rather than marginal surplus.

For this very reason, the auction for priority access still falls short of perfect price

discrimination. For instance, in the best-case scenario, where bidders are homoge-

neous, the seller fully extracts the consumer surplus of the bidders who are served.
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However, the customers who obtained nothing have a greater marginal value for the

good than those who were served; thus total surplus would be higher if all customers

received an equal portion of the good. Thus, the auction may not be the optimal

mechanism for maximizing revenue in this environment, if some other mechanism

can preserve incentives on the intensive margin and still capture the full consumer

surplus.

Even on the extensive margin, the auction may occasionally award first priority

to a customer with lower total surplus, due to the use of mixed strategies. How-

ever, as the valuations become more distinct (and hence, the potential loss becomes

greater), the auction makes these errors less frequently. Moreover, the auction typi-

cally performs better on this dimension than the lottery for priority access; the biggest

exception occurs when the seller excludes a bidder with the highest valuation.

Our model could easily be reinterpreted for other environments. For example,

consider rent seeking. A politician has some supply of political capital (i.e. the

ability to influence policy) that she can distribute. A number of special interest

groups may want this capital used on their behalf, but the politician must somehow

prioritize the issues she will address. Lobbyists can compete for access through their

campaign contributions, with the largest contributor receiving first priority. The

winning lobbyist, however, rarely depletes the entire supply.16 Thus, we frequently

see a politician catering to several special interest groups that were prominent in her

election. Note also that the competing agents pay their bids regardless of the auction

outcome (the unsuccessful lobbyist is not refunded his campaign donations). The

access payment seems to be a particularly fitting allocation mechanism here, since

directly selling the political capital on a per-unit basis would undoubtedly be seen as

quid-pro-quo bribery, while an ex-ante donation is less suspect.

Another example is the grant application process. The organization offering the

grant has some pool of money available. The applicant’s bid for this grant money can

be seen as the effort in drafting a proposal, with the best proposals (those with the

highest bid) given first priority on the pool of monies. Even so, the best grant seldom

16For instance, the lobbyist may have to expend effort justifying the political capital to be used.
Cotton (2010) presents a model in which lobbyists compete in an all-pay auction for an audience
with the politician, but on winning, must present verifiable evidence supporting the policy they seek.
In that sense, the politician could have identical preferences to the special interest group, with both
agreeing when the marginal benefit of expending more political capital on that issue is outweighed
by its opportunity cost.
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absorbs the entire pool. This is because there is some marginal cost in justifying a

larger budget for the proposal.

A similar competition describes consumer’s queuing decisions for a good in short

supply (such as with gasoline shortages or holiday door-buster sales). If the retailer

opens at a particular time, each consumer bids by choosing how early to arrive and

stand in line.17 The earliest arrival will be the first to make purchases, but does

not typically purchase the whole supply; perhaps the buyer has capacity or credit

constraints preventing this.

In the context in which bids are collected by the seller, such as political rent

seeking or key deposits to circumvent rent control, the auction allows the seller to

capture rents. On the other hand, when applied to grant writing or queuing, the bids

represent wasted resources (from a social standpoint). Indeed, applying our same

results regarding expected bid revenue, the maximum amount of waste occurs when

all but one customer will be able to buy what he wants. Indeed, society can benefit by

having fewer units available so as to reduce the incentive to queue. Alternatively, one

can eliminate the wasted time by allowing the price to adjust to its market-clearing

level; indeed, consumers could find themselves spending less (when the saved time is

included) at the market price than under the lower price ceiling, as demonstrated in

Proposition 3.

If large amounts of resources are wasted via queuing, sellers would have strong

incentives to introduce alternatives that capture the otherwise wasted rents. This

can be seen in the debate over net neutrality. Bandwidth is a finite but divisible

good, and in times of peak demand, it is typically allocated proportionally among

users; for customers accessing large media files, the resulting wait could be sufficiently

frustrating to make them abandon their downloads.

As an alternative, some service providers have sought the ability to prioritize

certain content providers or customers (for a fee) as a means of allocating the scarce

bandwidth. This tiered internet system could be seen as an auction for priority access,

which we predict would capture much of consumer surplus. It is unclear whether this

17This was considered in Holt and Sherman (1982) and Taylor, et al (2003), with the assumption
of unit demand and independent private valuations, which yields a pure strategy Bayesian Nash
equilibrium. When interpreted as a model of strategic queuing, our paper yields results analogous
to the competitive outcome in Platt (2009). In that environment, consumers take queue times as
given and decide whether to wait in the queue to gain access to the market. The equilibrium queue
time adjusts to make identical agents indifferent about participation. The aggregate queue time
incurred in that setting would equal the expected bid revenue here.
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would encourage expansion of bandwidth; a monopolist would want some regularly-

occurring congestion to encourage competition for access, but as seen in our model,

it only requires a few unsatisfied customers to maintain maximum expected revenue.

Of course, uncertainty plays a key role in internet service (and other) markets, as

customers must anticipate their and others’ data needs. Indeed, the assumption that

bidders know each others’ valuations, though common in all-pay auctions, is perhaps

the most restrictive of our model. We anticipate that a parallel research agenda in a

private valuation framework would share many features of our model, but we leave

this study for future work.
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A Proofs

A.1 Proof of Proposition 1

Proof. Existence is proven by applying Corollary 5.2 of Reny (1999). Three conditions

are required to apply this result; the first two are clearly satisfied.

• The space of pure strategies [0,M ]n must be compact and Hausdorff.

• The payoff function in pure strategies vi(qi(b−i, bi)) − pqi(b−i, bi)− bi must be

bounded and measurable on [0,M ]n.

• The mixed strategy game is better-reply secure. Formally, let µ̄ be any non-

equilibrium mixed strategy profile. Let ū be a profile of expected payoffs such

that for some sequence µk → µ̄, u(µk)→ ū. The game is better reply secure if

there exists some player i and strategy µ̂i such that ui(µ−i, µ̂i) > ūi for all µ−i

within some open neighborhood of µ̄−i.

The third condition is easily satisfied if µ̄ has no consequential ties occurring with

strictly positive probability. If so, there is no discontinuity at u(µ̄). Since µ̄ is not

an equilibrium profile, some agent i has a best response to µ̄−i that strictly increases

his utility above ui(µ̄). By keeping the neighborhood of µ̄−i sufficiently small, i’s

utility remains bounded above ui(µ̄): even if nearby µ−i introduce a consequential tie

(and hence a discontinuity), the probability of that tie occurring is limited as small

as needed. Hence, any drop in utility at such discontinuities can be kept arbitrarily

small, and changes elsewhere are continuous.

Suppose instead that a consequential tie occurs with strictly positive probability

under µ̄. In this case, it is not necessarily the case that ū = u(µ̄). Since µ̄ is not an

equilibrium profile, there still exists some i with a best response to µ̄−i that strictly

increases his utility above ui(µ̄). If he is not involved in any of the consequential ties,

the analysis from before still applies.

If the only agents not playing a best reply are involved in a consequential tie, the

danger is that ū may treat some of them as if they always win the tie — and there

may not be a µ̂i for such a person that strictly provides more utility. However, since

this is a consequential tie, at least one of the agents involved has positive probability

of not receiving his full demand. That agent can strictly improve on µ̄i by shifting

the strictly positive atom he placed on the consequential tie(s) to ε higher. There can
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only be a countable number of consequential ties, so he can do this without entering

another tie. By doing so, he strictly wins each tie and obtains his full demand, but

with an insignificant increase in his expected bid, thus obtaining a strictly higher

payoff that ūi.

With i playing the µ̂i so constructed, we can contain µ−i to a small enough neigh-

borhood so that i still receives more than ūi. Even if they move some positive prob-

ability to the atoms of µ̂i, we can restrict it to be small enough that it only slightly

decreases the expected utility of i.

A.2 Proof of Proposition 2

Proof of claim 2.1. Assume there is some interval (a1, a2) ⊂ [0,M ] such that for

all b ∈ (a1, a2), b /∈ B∗j for all j 6= i. Suppose agent i considers choosing some

bi ∈ (a1, a2). If instead he chooses b′i = bi − ε ∈ (a1, a2), then for any b−i ∈ B∗−i,

qi(bi, b−i) = qi(b
′
i, b−i). In words, whichever bid profile is selected by the other players,

both bi and b′i will have the same rank compared to the other bids, and thus obtain

the same quantity for agent i.

But then EUi(b
′
i, µ
∗
−i) = EUi(bi, µ

∗
−i) + ε, since both integrate over the same out-

comes, but b′i does so with a smaller bid. Thus, no strategy bi ∈ (a1, a2) can be utility

maximizing; hence bi /∈ B∗i .

Proof of claim 2.2. Suppose there exists a bid a ∈ (0,M ] such that µ∗i ({a}) > 0 for

some agent i. Note that there can only be a finite number of atoms among the n

agents; thus, there is some range (a− ε, a+ ε) in which there is no other atom, though

other agents might have an atom at a.

Let q̃i(b) and q˜i(b) denote the most and least agent i could receive under bidding

profile b. These only differ when a consequential tie occurs — if so, there is enough

remaining supply to satisfy some but not all of those who bid the same as i, and the

randomly selected permutation π determines who is served first.

Denote the set of bids where a is consequential to i as:

Ci(a) ≡
{
b−i ∈ B∗−i : bi = a and q̃i(b) > q˜i(b)

}
(3)

Suppose µ∗−i(Ci(a)) > 0. Then agent i can increase his expected utility by shifting his
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atom µ∗i (a) from a to a+ ε. By doing so, he ensures that he will always obtain q̃i(b)

for all b ∈ Ci(a), rather than sometimes obtaining q˜i(b). Moreover, for all b /∈ Ci(a),

his quantity obtained will weakly increase. Thus, for ε sufficiently small, the strict

increase in utility from added consumption will outweigh the small increase in bid.

If instead µ∗(Ci(a)) = 0, then when i bids a, two possibilities exist. First, bidding

a − ε could give the same outcomes with equal probability. This is to say, for any

quantity q,

µ∗−i({b−i ∈ B∗−i : qi(a, b−i) = q}) = µ∗−i({b−i ∈ B∗−i : qi(a− ε, b−i) = q}).

This would happen if no other agents have (a − ε, a) ⊂ B∗j , or if those who do

have no effect on the remaining supply available for i (because the supply is already

exhausted, or is so plentiful that both i and j can be satisfied). In such a case,

EUi(a, µ
∗
−i) = EUi(a − ε, µ∗−i) − ε; i can reduce his bid cost while maintaining his

average benefit from his opportunities to purchase.

Alternatively, if bidding a− δ for any δ ∈ (0, ε) would have some impact on agent

i’s outcomes, then there must exist some agent j with (a− ε, a) ⊂ B∗j . If so, agent k’s

outcomes are also affected by whether agent i is allowed to purchase before him or

not. Also, because they are part of an equilibrium best response, any bk ∈ (a− ε, a)

produces the same expected utility EUk(bk, µ
∗
−k). However, by bidding a + δ for

some arbitrarily small δ > 0, agent k can strictly increase his utility, because he has

reduced by µi({a}) the probability of being outbid by agent i, which allows him the

opportunity to purchase strictly more of the good, while incurring a slightly higher

bid.

Thus, in all cases, we obtain a contradiction if agent i has an atom at a. Note

that if an atom were at a = 0, the first case regarding consequential bids still apply ;

however, if bids are almost always inconsequential bids, the latter arguments cannot

be replicated since there is no bid below 0.

Proof of claim 2.3. Suppose that there is some interval (a1, a2) such that for all b ∈
(a1, a2), b /∈ B∗j for all j. Pick an agent i such that a2 ∈ B∗i . By claim 2 of Proposition

2, there are no atoms at a2. Thus, if agent i were to bid b ∈ (a1, a2), he would achieve

the same outcomes with the same probability as when bidding b = a2, but with a

lower bid. Hence this cannot be an equilibrium.

Thus, the aggregate support ∪iB∗i must be connected, having ruled out any gaps.
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Moreover, the same logic applies to an interval (0, a2), hence 0 ∈ ∪i B∗i .

Proof of claim 2.4. For any strategy µ−i, EUi(0, µ−i) ≥ vi(0); the worst that can

happen when bi = 0 is that agent i never wins the opportunity to purchase any

amount, but made no expenditure to get there. Thus, since bi = 0 is always a feasible

choice, then EUi(µ
∗
i , µ

∗
−i) ≥ EUi(0, µ

∗
−i) ≥ vi(0) in equilibrium.

Proof of claim 2.5. Suppose µ∗i (0) > 0 for some i, S ≤
∑

j 6=i dj(p), and EUi(µ
∗) >

vi(0). This also means that EUi(0) > vi(0); in other words, with positive probability,

agent i is able to buy some positive amount of the good even when bidding bi = 0.

If there were almost never consequential ties at b = 0, all agents j 6= i would bid

strictly more than 0 with probability 1. If so, S ≤
∑

j 6=i dj(p) implies that agent i

would almost always receive 0 of the good, which contradicts.

So consequential ties must occur at b = 0 with positive probability; thus, some

subset of the bidders also have an atom at 0. But then the same logic applies as in

the proof of Claim 1.2: Any one of the agents who ties at 0 would strictly benefit by

shifting their atom from 0 to ε. This ensures access to a strictly larger amount of the

good and only requires an arbitrarily small increase in the bid. Thus µ∗ would not

be an equilibrium.

Proof of claim 2.6. Suppose
∑

j 6=i dj(p) < S ≤
∑

j dj(p). Again, we can rule out

consequential ties at 0, because if they occurred with positive probability, any tied

agent would have an incentive to raise his bid slightly.

Instead, suppose that there are almost never consequential ties at b = 0. Again, all

other agents must bid strictly more than 0 with probability 1. That means when i bids

0, he receives S−
∑

j 6=i dj(p) almost surely. Hence, EUi(µ
∗) = ui

(
S −

∑
j 6=i dj(p), 0

)
.

Proof of claim 2.7. Let b̂i ≡ maxB∗i = max∪j B∗j . Bidding b̂i will almost always

result in i receiving first priority. Recall that there are no atoms if b̂i > 0, and if

b̂i = 0 then there are no consequential ties and S >
∑

j dj(p). Thus qi(b̂i, b−i) =

min{di(p), S} for almost all b−i ∈ B∗−i. Hence, i’s expected utility must equal

EUi(b̂i, µ
∗
−i) = ui

(
min{di(p), S}, b̂i

)
.
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A.3 Proof of Proposition 3

Proof. Let each buyer have linear demand specified as: p = c−a·qi. At the controlled

price p, individual demand is d; if the market clearing price pmkt is charged, individual

demand must be S
n

. Hence,

pmkt − p = c− a · S
n
− (c− a · d) = a ·

(
d− S

n

)
.

On the other hand, the total benefit w from purchasing d units at price p is defined

from the individual’s consumer surplus:

w =
d · (c− (c− a · d))

2
=
a · d2

2
.

Thus, the seller earns more profit under the price control if and only if: a·
(
d− S

n

)
·S <

k · a·d2
2

. Note that by definition, S = k ·d. Thus, the inequality simplifies to k > n
2
.

A.4 Proof of Proposition 4

Proof. From Proposition 2, we know that F1 and F2 must share the same support

(Claim 1), which includes 0 (Claim 3). Since expected utility must be constant

throughout that support, we can solve for these c.d.f.s from the following two equa-

tions:

EU1 = w1F2(b) + x12(1− F2(b))− b and EU2 = w2F1(b) + x21(1− F1(b))− b,

obtaining:

F1(b) =
b− x21 + EU2

w2 − x21

and F2(b) =
b− x12 + EU1

w1 − x12

.

Suppose F2 has no atom at 0. To get F2(b) = 0 requires EU1 = x12. Then

F2(b) = 1 at b = w1− x12. Since these two distributions share the same support (and

there are no atoms above 0, due to Claim 2), F1(w1−x12) must equal 1 as well. This

allows us to solve for EU2 = w2−w1 + x12. But then F1(0) = w2−w1+x12−x21

w2−x21
, which is

admissible for a c.d.f. only if w1 − x12 = w2 − x21, in which case this is equivalent to

the proposed equilibrium (with substitution). If however w1 − x12 > w2 − x21, then

F1(0) < 0 which contradicts the properties of a c.d.f.
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Thus, consider when F2 has an atom at 0. Claim 6 requires EU2 = x21, so

F1(b) = b
w2−x21

. The maximum bid in the support is b = w2 − x21; this in turn pins

down EU1 = w1−w2 + x21 in order to ensure F2(w2− x21) = 1. Note that F2(0) ≥ 0

while F1(0) = 0. Moreover, bidder 2 would never want to bid more than b = w2−x21;

doing so would ensure he places first but give him less than x21 utils after the bid is

paid. Similarly, bidder 1 would get strictly less than EU1 by bidding more than the

equilibrium support.

A.5 Proof of Proposition 5

Proof. In this three bidder environment, the expected utility from bidding b is ex-

pressed as follows:

EU1(b) = (F2(b))
2w1 + 2F2(b) (1− F2(b))x12 − b

EU2(b) = F1(b)F2(b)w2 + F1(b) (1− F2(b))x22 − b

It is a minor algebraic exercise to demonstrate that, after substituting for the proposed

strategies F1(b) and F2(b), these simplify to EU1 = w1 − w2 and EU2 = 0 for all

b ∈ [0, w2]. Moreover, for either type, bidding b > w2 yields strictly lower expected

utility.

For this to be an equilibrium, we must assume that w1 ≥ w2; otherwise EU1 < 0,

violating Claim 4 of Proposition 2. We must also assume 2(w1 − x12) ≥ w2 − x22 to

ensure that F1(b) is weakly increasing and thus a well-formed CDF.

A.6 Proof of Proposition 6

Proof. The equilibrium bid is found by taking the first order condition, setting the

derivative with respect to bi equal to zero. Then symmetry is imposed, replacing

bj with bi. The second derivative confirms that this is a necessary and sufficient

condition.

Expected bid revenue is always higher under the auction format. The auction
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produces more revenue when

(k + 1)w

(n− k)w − x
>

k∑
t=0

1

n− t
.

But note that:

(k + 1)w

(n− k)w − x
>

k + 1

n− k
=

k

n− k
+

1

n− k
>

k

n− k + 1
+

1

n− k

>
1

n
+

1

n− 1
+ · · ·+ 1

n− k + 1
+

1

n− k
=

k∑
t=0

1

n− t
,

so this always holds.

By the same token, expected utility must be higher in the lottery if revenue is

lower, since total surplus is equal. Indeed, when k ≤ n−1, the auction gives expected

utility of 0. The lottery, on the other hand, produces strictly positive utility, as

evidenced by the fact that bi = 0 was available but not selected.

A.7 Proof of Proposition 7

Proof. Again, the first order condition is necessary and sufficient for utility maximiza-

tion. The equilibrium bids are found by jointly solving the two first order conditions.

Substituting these into the objective functions gives the equilibrium expected utility

of:

EU∗1 = x12 +
(w1 − x12)

3

(w1 − x12 + w2 − x21)2
and EU∗2 = x21 +

(w2 − x21)
3

(w1 − x12 + w2 − x21)2
.

The analysis of efficiency and revenue are included in the text.

A.8 Algorithm for Finding Equilibrium Auction Strategies

Here we briefly sketch an algorithm for finding the equilibrium mixed strategies in

the auction for priority access. The process initiates with a guess (albeit an informed

one) of each bidder’s support, which will take the form Bi = 0∪ [ai, Ai], where ai and

Ai are both real numbers.

One useful observation is that if two bidders are of the same type, their mixed

strategies must be identical over the intersection of their supports (besides at b = 0)
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in order for both to have constant expected utility across that shared support. Thus,

asymmetries can only occur with one bidder having a bigger atom at 0 and abstaining

for some range until the other bidder’s cumulative distribution Fi(b) equals the size

of that atom, beyond which both bidders’ c.d.f. are identical.18 Thus, individuals

with identical utility must have the same Ai.

If demand will be exhausted before the last bidder consumes, then typically Ai =

min{wi,maxj 6=iwj}. This is because bidders are never willing to bid more than their

value of first place, but if their value happens to be higher than all others, they never

bid more than the second highest value (from Claim 1 of Proposition 2). At the same

time, bidders typically include this Ai in their support because of the potential of

placing last. If wi > max∪j 6=i B∗j , then bidder i can guarantee himself first priority

and a strictly positive payoff by bidding just above ∪j 6=i B∗j , which would be better

than occasionally getting last place and no consumption.

Once this guess is made, expected utility for each bidder is pinned down by Claims

5, 6, and/or 7. We then set that equal to EUi(b) as a function of the unknown

cumulative density functions, Fi(b), as in the proof of Proposition 5. This formulates

a system of n equations (for each b) with n unknowns (Fi(b), for each b), which can

sometimes be solved analytically, or if necessary, numerically.

Once the solution is found, one must verify that it is a well-formed cumulative

distribution function. That is, it is possible to get a solution that violates one of

the following rules. If so, this is usually fixed by adjusting ai (perhaps creating

asymmetries among identical bidders). In particular, we must check:

1. Fi is non-decreasing: F ′i (b) ≥ 0 for all b ∈ Bi.

2. Fi(Ai) = 1.

3. Fi(0) = Fi(ai).

The last two ensure that there are no atoms except at bi = 0, as required in Claim 2.

18Barut and Kovenock (1998) prove this for homogenous bidders with multiple prizes; the same
proof (with minor adaptation) applies here to two bidders of the same type.

35



References

Barut, Yasar, and D. Kovenock. (1998) “The Symmetric Multiple Prize All-pay Auc-
tion with Complete Information,” European Journal of Political Economy 14, 627-
644.

Baye, Michael, D. Kovenock, and C. de Vries. (1993) “Rigging the Lobbying Process:
An Application of the All-pay Auction,” American Economic Review 83, 289-294.

Baye, Michael, D. Kovenock, and C. de Vries. (1996) “The All-Pay Auction with
Complete Information,” Economic Theory 8, 291-305.

Baye, Michael, D. Kovenock, and C. de Vries. (2009) “Contests with Rank-order
Spillovers,” Economic Theory, forthcoming.

Clark, Derek, and C. Riis. (1996) “A Multi-Winner Nested Rent-Seeking Contest,”
Public Choice 87, 177-184.

Clark, Derek, and C. Riis. (1998) “Competition over More than One Prize,” American
Economic Review 88, 276-289.

Cotton, Chris. (2010) “Pay-to-Play Politics: Informational lobbying and Contribution
Limits when Money Buys Access.” Mimeo, University of Miami.

Fang, Hanming. (2002) “Lottery Versus All-pay Auction Models of Lobbying,” Public
Choice 112, 351-371.

Hassin, Refael, and M. Haviv. (2002) To Queue or Not to Queue: Equilibrium Be-
havior in Queuing Systems, Kluwer Academic Publishers: Boston, MA.

Hillman, Arye, and J. Riley. (1989) “Politically Contestable Rents and Transfers,”
Economics and Politics 1, 17-39.

Hillman, Arye, and D. Samet. (1987) “Dissipation of Contestable Rents by Small
Numbers of Contenders,” Public Choice 54, 63-82.

Holt, Charles, and R. Sherman. (1982) “Waiting-Line Auctions,” Journal of Political
Economy 90, 280-294.

Klose, Bettina, and D. Kovenock. (2011) “The All-Pay Auction with Complete Infor-
mation and Identity-Dependent Externalities,” Mimeo, Purdue University.

Menicucci, Domenico. (2006) “Banning Bidders from All-pay Auctions,” Economic
Theory 29, 89-94.

36



Oi, Walter. (1971) “A Disneyland Dilemma: Two-Part Tariffs for a Mickey Mouse
Monopoly,” Quarterly Journal of Economics 85, 77-90.

Platt, Brennan. (2009) “Queue-rationed Equilibria with Fixed Costs of Waiting,”
Economic Theory 40, 247-274.

Platt, Brennan, J. Price, and H. Tappen. (2010) “Pay-to-Bid Auctions,” NBER Work-
ing Paper, 15695.

Reny, Philip. (1999) “On the Existence of Pure and Mixed Strategy Nash Equilibria
in Discontinuous Games,” Econometrica 67, 1029-1056.

Siegel, Ron. (2009) “All-pay Contests,” Econometrica 77, 71-92.

Taylor, Grant, K. Tsui, and L. Zhu. (2003) “Lottery or Waiting-line Auction?” Jour-
nal of Political Economy 87, 1313-1334.

Tullock, Gordon. (1975) “On the Efficient Organization of Trials,” Kyklos 28, 745-
762.

Tullock, Gordon. (1980) “Efficient Rent Seeking,” Ch. 6 in Buchanan, Tollison, and
Tullock, Toward a Theory of the Rent-Seeking Society, Texas A&M University
Press, College Station, Texas.

37


