

ESA STATA TRAINING
MANUAL

A 6-lesson guide to learning essential Stata for
Econ 388 and beyond

Page 1

Table of Contents

I. An Introduction to Stata .. 2
A. What is Stata ..2
B. How do I access Stata? ...2
C. The console and setup ..2
D. Using scripts in Stata ..3
E. Important file types ..3
F. Initial glance at the data ..4

II. Data Processing ... 6
A. Generating, egen, and replace ...6
B. Drop, keep, and rename ..7
C. Order, sort, and bysort ..8
D. Dealing with duplicate observations ...8
E. Preserve and Restore ..9

III. Reorganizing, Combining, and Exporting Data ... 9
A. Reorganizing ..9
B. Combining (Append and merge) .. 11
C. Exporting data .. 13

IV. Advanced Functions ... 13
A. Loops... 13
B. Strings ... 15
C. Dates.. 15

V. Econometric Functions ... 16
A. Running a Regression ... 16
B. Fixed effects, interactions, and lags ... 17
C. Outputting regression results .. 17

VI. Tips and Tricks ... 18
A. Macros ... 18
B. Other helpful commands .. 18

Page 2

I. An Introduction to Stata
A. What is Stata

• Stata is a data processing software that is primarily used by economists to analyze
and process data.

• Some advantages of Stata over other coding language are that it contains many
popular and default econometrics packages, the syntax is simple and intuitive, and
results are easily reproducible because Stata is not open source

• Some disadvantages of Stata include that it can only handle one dataset at a time, it
cannot handle as large of datasets as other leading software, and since it is not open
source, there are fewer commands available for more complex operations.

B. How do I access Stata?
• Citrix allows users to access Stata off campus and on their own personal computers.

Most school computers have Stata downloaded onto them by default.

• Go to apps.byu.edu to access the BYU Citrix server. Use your BYU email address
and password to log in.

• After logging in, select StataSE from the list of applications. After opening, Stata
users must connect to Box (a file storing software) in order to access files. This is
done by going to kumo.byu.edu, selecting Box, then providing a netid@byu.edu to
authorize Box.

• After authorizing Box, users can open and save datasets and scripts by selecting
Open>This PC then This PC>Box

Figure 1: View of f i le explorer after install ing box

C. The console and setup

mailto:netid@byu.edu

Page 3

• Figure 2 illustrates the Stata console and describes its functionality

• For the purpose of this example, we will utilize the auto dataset. This can be
uploaded by using the command sysuse auto.dta.

Figure 2: I llustration of the console

Note: 1: The history section shows all the commands that have been performed in the
Stata session. Commands that failed to execute are shown in red. The user can click on
an old command to rerun it. 2: The command window can be used to run one-line
statements. 3: The results window shows the results , the error descriptions, and a list of
all commands that have been run. 4: The variables section contains a l ist of all the
variables contained in the data. 5: Shows the selected variable’s name, label, type, and
other important information. 6: This button creates a new do -fi le script.

D. Using scripts in Stata
• Scripts (called “do-files” in Stata) are documents containing chunks of code and are

essential in writing reproducible and readable code. They also allow the user to run
multiple lines of code at once.

• Users should also leave detailed comments in the script to clearly document
assumptions and rationale behind decisions. Comments are not read as code by the
computer but are notes for human users of the code. Comments are shown in green.

• Comments are created by using “*” for single line comments or “/*” to open the
comment for multiple line comments and “*/” to close the comment

E. Important file types
• Before users can perform any processing or analysis, they must determine the file

type that the data is stored in and select the appropriate function to read in the data.

• At BYU, most data will be available in.dta, .xlsx, or .csv format, so it is important to
learn the following functions to read in the data.

• use “file path.dta”, clear

 Only for Stata datasets (or .dta files)

 The clear option is mandatory if another dataset is currently in use. If the clear
option is used, all data will be lost from the previous dataset

1

2

3

4

5

6

Page 4

 The auto data that we are currently using is a .dta file

• import excel “file path.xlsx”, clear case(lower | upper | preserve) allstring firstrow
sheet(“sheet_name”)

 Can read in xlsx, xls, and other excel workbooks

 The clear option removes the dataset in memory

 The sheet option allows the user to specify which sheet within the excel sheet to
read in

 The firstrow option instructs Stata that the first row of the data should be used as
the variable names

 The allstring option instructs Stata to read in all of the variables as strings (or
characters) instead of numeric

 The case option allows the user to specify if the variable names should be read in
as lower case, upper case, or to preserve the case

• import delimited “file path.txt”, delimiters(“delimiter”) case(lower | upper | preserve)
clear varnames(row of variable names or nonnames)

 Can be used for data structures that are separated by delimiters such as commas
(csv), tab, semicolon, or many others

 The clear option removes current dataset from memory

 The delimiters option specifies how the data is separated. For example, a csv
would use delimiters(“,”) to read the data

 The case option allows the user to specify what case to use when reading in
variable names

 The varnames option allows the user to specify which row the variable names are
located, or nonames to specify there are no variable names

F. Initial glance at the data
• After reading in the data, it is important to get a general idea of the structure and

contents of the data. The following functions may be useful:

• browse

 Brings up a grid view of the data. Allows the user to get a feel for the size and
general contents of the data

 Strings (or characters) are shown in red and numeric values are shown in black.
Blue values are variables that have value labels or are encoded.

Figure 3: Results from the browse function

Page 5

• codebook variable list, all mv

 Will give a brief description of all the variables in the dataset (or only those listed
in the variable list)

 The all option instructs Stata to provide a complete report

 For all variables, if will provide the variable type, # of unique values, and the
number of missing values

 For numeric variables, it will also provide a range of values, mean, standard
deviation, and several percentiles of the data

 For strings, it will provide a list of all the unique data entries with their frequencies
of occurrence in the data

 If the mv option is specified, Stata will attempt to find patterns in the missing
values in the data

Figure 4: Results from the codebook function on a str ing variable

• tabulate, missing

Page 6

 The tabulate function is helpful for looking at the different values of string
variables as well as their frequencies

 The missing option specifies to Stata that the user wants to also see how many
missing values are in the dataset

Figure 5: Results from the tabulate function

• summarize, detail

 The summarize function is only used for numeric variables to see basic summary
statistics

 The detail option includes more such as skewness, kurtosis, and more detailed
percentiles.

Figure 6: Results from the summarize function

II. Data Processing
A. Generating, egen, and replace

• Variables can be created from information contained in other variables or from
scratch

• gen new variable name = value if

 The gen command creates a new variable with a value specified by the user.

 The if option allows the user to specify a condition that Stata will follow when the
new variable is created.

Figure 7: Code for generating a new variable "weight_kg" that is the weight multiplied by
the conversion factor to KG

Figure 8: Code for generating a new variable price_over_6000 which is 1 if the price is
greater than 6000

Page 7

Note: This variable generates missing values for all observations that do not have a price
greater than 6000

• Sometimes, the generate command is insufficient for creating a variable that is a
combination of multiple observations within a variable. For example, the generate
function could not calculate the total price for all cars in the dataset. However, Stata
has the egen function to handle these problems

• egen new variable name = function(variable) if

 The function section of the code allows the user to specify a function (such as
total, std, ect. See all options by typing “help egen” into the command window)
and apply that function to the include variables.

Figure 9: Code for egen command to create a variable that contains the total price for all
observation in the dataset

Note: If the user browsed the total_price variable, they would see the value is the same
for all observations in the data because the egen command typically uses all observations
in the price variable to generate one value.

• The difference between the generate and egen command can potentially be difficult
to understand at first. In most cases, the generate command uses arithmetic
operations, constants, and variables to create a new variable; inversely, egen always
requires a function to manipulate an already existing variable to create a new one

• The replace command is useful for changing the contents of an already existing
variable

 replace variable name = new value if

 This command is also often used with an if statement to only change a subset of
the total observations

Figure 10: Replaces the missing values from the previous example with "0"s so that all
observations have a value for the variable price_over_6000

B. Drop, keep, and rename
• The drop and keep command can be used for dropping and keeping variables or

observations.

• To drop or keep variables, the syntax is: drop/keep variable name

 If the drop command is used, only the listed variables will be removed from the
dataset; however, if the keep command is used, all variables that are not in the list
will be removed from the data

Page 8

• To drop or keep observations within a variable, the syntax is: drop/keep if condition

 Like variables, if the drop command is used, all observations that meet the
condition will be removed. For the keep command, all observations that do not
meet the condition will be removed

• Users should be cautious with these commands because it will remove data from the
dataset. If these commands are used accidentally, the data will have to be reloaded

Figure 11: Results of using the drop command to remove 23 observations from the dataset
that have a price that is greater than 6000

• The rename command can be used to change the name of a given variable or

variables

 rename old name new name

 rename (old names) (new names)

C. Order, sort and bysort
• The order command allows the user to specify the order in which the variables

appear in the data. This is helpful for readability in large datasets

 order variable name

 This command would put whatever variables contained in the list at the front of
the dataset

• The sort command allows users to sort observations in ascending order based off the
variable list included.

 sort variable name, stable

 The stable option should always be included for reproducibility purposes. See
“help sort” for more details

 If the user needs to sort in descending order, the gsort command may also be
useful

• Occasionally, users may want to apply specific functions (like mean or standard
deviation) across certain subsets of the data. The bysort command, in combination
with the egen command, makes this possible

 bysort variable to subset : egen new variable name = function(variable)

Figure 12: Code for calculating a separate average price for both foreign and domestic
cars that will be stored in average_price_location

D. Dealing with duplicate observations
• Identifying and dealing with duplicate observations in data is an essential skill for any

user processing data.

Page 9

• Isid variable name

 The first step in identifying duplicate observations. The Isid command will return
an error if there are any observations that are duplicates

Figure 13: The results from using isid on mpg and mpg & weight

Note: The first command fails because many observations have the same mpg, but the
second does not because no observations have both the same mpg and weight

• duplicates tag variable names, gen(name of marker variable)
 This command generates a variable which marks how many duplicates a given

observation has within the dataset. It is useful to combine this with isid >
duplicates tag > tabulate to determine which observations are duplicates and how
many there are.

• duplicates drop variable names, force
 Useful for dropping the duplicate observations; however, it will return an error if a

variable list is included unless the force option is used
 It is dangerous to use this command unless the user is very familiar with the

dataset. It is better to tag the duplicates and remove them from analysis.

E. Preserve and Restore
• The preserve function saves a copy of the current dataset. It may be helpful to think

of preserve as a function that takes a snapshot in time of a dataset. The restore
function restores the dataset to the previous snapshot

• Preserve and restore are inverse operations that allow users to get over the one
dataset limitation of Stata. They are also useful for temporarily saving a dataset if it is
going to be temporarily changed.

• Preserve cannot be used again until a restore is used. If the user does not want to
restore to the previous dataset in memory, but does want to use a restore to keep a
snapshot of the current dataset in memory, Restore, not will remove the previously
used and allow a preserve to be used again.

Page 10

Figure 14: Results of using a preserve and restore

Note: Before the preserve statement, the dataset has 74 observations in it. After the
preserve, 23 observations are removed because they do not meet selected criteri a. If the
user decides that he or she wants to return to the original dataset before the observations
are removed, he or she can just use the restore command to return to the dataset
containing all 74 observations.

III. Reorganizing, Combining, and Exporting data

A. Reorganizing
• When analyzing data, it is often important to aggregate or reorganize data in a way

that makes it more readable or easier to interpret

• collapse (function) variable names 1, by(variable names 2) fast

 The collapse function aggregates the value of variable name 1 based on variable
name 2. This aggregation is done by using a function such as sum, mean, max,
min etc.

 For example, in Figure 15 the mean of weight is collapsed by foreign versus
domestic cars. Instead of 71 observations and over 10 variables before the
collapse, the dataset is reduced to 4 observations with 3 variables.

Figure 15: Results from collapsing weight by foreign and price over 6000

 Another important function of collapse is that it changes the dataset in memory. If

the dataset is not preserved or saved before using a collapse, the previous
contents of the dataset will not be accessible and will need to be reloaded.
Therefore, it is common to use a preserve statement before collapsing the data.

 The fast option allows the collapse command to compute the new dataset faster
and should be used with large amounts of data to increase efficiency.

• contract variable names

Page 11

 The contract command is like the collapse command, but it is used with strings. It
allows users to see which combinations of strings appear in the dataset and at
what frequency.

 Like the collapse command, the contract command changes the dataset in
memory. Therefore, it is important to typically preserve the dataset before using
the function.

Figure 16: Results from a contract statement on make and foreign

Note: If there were certain makes that were made both foreign and domestically, there
would be two entries for a given make. Furthermore, if there was more than one
observation

• reshape wide/long variable name 1, i(variable name 2) j(variable name 3) string

 The reshape command allows the user to change the structure of the data, but it
does not aggregate the data in any way. Instead, it can change the data from long
(few variables and many observations) to wide (many variables and few
observations) or vice versa

 This function is often used with a collapse to organize the data into a more
readable format. Figure 17 shows an example of a reshape wide, but it may take
some practice before it is clear how this command works.

 Generally speaking, variable name 1 is the data that should be contained within
the table (typically numeric), variable 2 is the variable that should be the row
index, and variable 3 is the variable that should be made into several different
variables based off its values.

Page 12

Figure 17: Side by side comparison between long (left) data and wide (right) data

Note: To move from long data to wide data, the code would be: reshape wide price, i(mpg)
j(foreign). In this case, mpg retains its status as a variable, but foreign is split into its two
levels (domestic = 0 and foreign = 1) with price.

B. Combining (Append and merge)
• Another critical skill for users to develop is combining multiple datasets appending

and merging. Typically, the dataset in use is called the master dataset and the
dataset that is being combined is called the using dataset.

• Appending, or a vertical merge, increases the length of the dataset (number of
observations) by combining two datasets with identical variable names.

Figure 18: An example of a vertical merge, or an append.

Page 13

Note: The variables in common across both datasets, Person ID and State, are combined
in the new combined dataset. Any variables that are only present in one are maintained,
but there may be missing values in the combined da taset.

• Merging, or a horizontal merge, increases the width of the master dataset (number of
variables) by using a variable that is common in both datasets.

Figure 19: An example of a horizontal merge, or a merge

Note: The variable that is used as a key variable is Person ID. Those observations of
Person ID that are in common in both datasets are combined, whereas those that are
unique in one of the datasets may contain missing values.

• append using “dta file name”

 The append command combines the dataset in memory with the dataset that the
user provides in the command.

 The variable names must be identical in both the dataset in memory and the using
dataset for the observations in the using dataset to be added to the dataset in
memory.

• merge(1:1/ m:1 (1:m)/ m:m) key variable name using “dta file”, gen(new variable
name)

 The merge command combines the dataset in memory with the dataset that the
user provides in the command. The user must also provide a key variable on
which the merge will be performed.

 Additionally, the user must specify the type of merge: one to one, many to one,
one to many, or many to many. A one to one merge indicates that there are all
unique values in both datasets of the key variable. The example in Figure 19 is an
example of a one to one merge. A many to one merge suggest that all values in
the using dataset are unique, but they may correspond to more than one value in
the master dataset. A many to many merges should rarely be used.

 Finally, the gen option allows the user to name the _merge variable that is
generate by default. This variable describes the result of the merge: 1 indicates
the observation is only in the master dataset, 2 indicates the observation is only in
the using dataset, and 3 indicates a successful merge. It is important to check the
results of a merge and confirm that the merge worked as expected.

Page 14

C. Exporting data
• Like importing data, there are several commands that may be useful to export data.
• save “name of file.dta”, replace
 The save command makes a copy of the Stata dataset in use and saves in the

specified location as a dta file.
 The replace option overwrites any file that is in the same location with the same

name. It is useful if the user needs to make several edits to the dataset or if the
script will be run multiple times.

 It is also helpful to use the compress command before exporting a .dta file to store
the variables most effectively.

• export excel using “name of file.xlsx”, sheets(“name sheet”) sheetreplace
firstrow(variables/labels)
 The export excel command makes a copy of the Stata dataset in use and saves it

as an excel workbook.
 The sheets option allows the user to specify what the sheetname that will contain

the data will be called.
 The sheetreplace option allows the user to specify that if the script is run again,

Stata should only replace the contents of the sheet listed in the sheets command
and not the entire workbook.

 The firstrow command allows the user to specify if the variable names or labels
should be included in the excel workbook.

• There is also an export delimited command, but it is generally only useful for large
datasets or if a specific file type is needed.

IV. Advanced functions
A. Loops

• Loops allow users to automate processes that are repetitive to save time and be
more efficient

• Forval local macro name = starting index / ending index { process }

 The Forval loop uses an index, or range of numeric values, to count the number
of iterations the loop should perform in a given process.

 For example, if the user provided “1/10” for the range of indexes, the process
provided by the user would run 10 times. The index values are inclusive.

 The process can be specified by the user and can use the local macro variable
name to access the current value of the index.

 The curly brackets must be included, and the final curly bracket should be on its
own line.

Page 15

Figure 20: Example of a forval loop

Note: The results from this simple loop are “2,4,6,8,10” because it is the index multiplied
by 2 (1*2 = 2, 2*2 = 4 and so on)

• Foreach local macro name in string values separated by spaces {process}
 The Foreach uses a list of strings provided by the user and performs a process for

each string value in the list.
 The string values are often variable names so the process can be performed on

variables.
Figure 21: Results from a foreach loop

Note: The foreach loop is commonly used to loop through variable names as shown here,
but it can also be used to loop through strings. In this example, the first observation of the
variables “make” “price” and “mpg” are displayed.

B. Strings
• There are many commands that can be used to manipulate string values. It is

important to note that Stata is case sensitive when working with strings, so it is helpful
to be consistent with case for observations and variables.
 This can be done by using the upper(variable name) or lower(variable name)

command for observations and reading in the variable names as lowercase in the
import command.

• Tostring variable name, replace gen(new variable name)
 The tostring command changes any numeric variable into a string variable and

either replaces the existing variable or can generate a new variable.

Page 16

 A command with similar syntax, destring, attempts to change a string variable into
a numeric variable. This command may generate missing values if certain
observations are unable to be changed into numeric.

• Substr(variable or macro name, starting character, number of characters to extract
from starting character)

 The substr command is useful for extracting a portion of a string variable and is
often combined with a gen command to save the contents of the desired string

• Subinstr(variable name, “characters to be replaced”, “characters to be used in
replace”)

 The subinstr command can replace a phrase within a string with a user specified
phrase. It is also typically combined with a gen command to save the contents.

• Split variable name, parse(delimiter)

 Splits the specified variable into multiple new variables depending on the number
of instances the delimiter. For example, if the string was “Hello world I’m John”,
and the delimiter was “ “, then there would be 4 new variables created

 The delimiter is by default a space, but can be changed to be a comma, dash, or
anything.

• There are other more complicated functions such as the Regex command that can be
used if more complex string manipulation is needed. Use online resources or the help
command to find more detail.

C. Dates
• A date variable in Stata is a numeric that is recognizable by Stata but unrecognizable

to a user unless it is formatted properly. There are two primary functions for creating a
variable:

• Mdy(variable containing month, variable containing day, variable containing year)

 This function can be used if there are several variables containing a numeric
value that represent day, month, and year. A similar function my() can be used if
there is no relevant day variable.

• Date(variable containing a string date variable “format”)

 This function can be used if there is one variable that contains a string value of
the date.

 There are many formats that a user can select to read in dates. Use “help date” to
determine the necessary format.

• Format date variable %date format

 After creating a date variable using one of the two methods listed above, the date
must be formatted so that it is readable for the user. Use “help date” again to
determine which format is needed for the situation. Generally, the format is %td
for mdy variables.

Page 17

Figure 22: Example using both date-creating methods

Note: The dataset currently contains a date variable, which is str ing containing a day,
month, and year value and three individual variables for day, month, and year. If a user
wanted to make a date variable from the string variable, the mdy function would be used.
Although this command would generate a functioning date, it would be impossible to read
without the user also including a format statement .

V. Econometric Functions
A. Running a Regression

• Most users utilize Stata for the numerous regression options that are included by
default

• Reg response variable explanatory variable(s), options

 The reg command allows the user to specify a response variable and one or more
explanatory variables and will output a table containing the coefficient estimates,
standard errors, R2, and other important statistics.

 Robust is a common option that uses the White standard errors to correct for
heteroskedasticity. There are also several other options for standard errors such
as bootstrapping and clustering.

 To identify other possible options, use “help reg”

• There are other regression commands such as areg, xtreg, or ivreg, but they will not
be discussed in this manual.

• Similarly, there are functions for both probit and logit models that will not be
discussed in detail.

Page 18

Figure 23: Results from a reg function of price and weight

B. Fixed effects, interactions, and lags
• Fixed effect models are common in all fields of economics. Briefly, fixed effects are

typically categorical variables (non-numeric variables) that are used to control for
possible confounding variables in the model.
 If the user needs to use a numeric variable (such as year) as a fixed effect, use

the code i.variable name to generate a fixed effect.

 If the desired fixed effect is in a string form, the user must create a new variable
that represents all the values of the string with a numeric using encode variable
name, gen(new variable name). After using the encode function, the same syntax
can be used to generate a fixed effect.

• Interactions between variables are also common. An interaction attempts to measure
the different effect of a given variable based on the value of another (for example,
race may have a different effect on income for males and females).

 To add an interaction term into the model, the syntax is: i.variable name#i.variable
name

 Recall that both variables must be discrete categorical variables, or the code will
break.

• Lagged variables are important to include if panel data is being used and the user
expects a delayed effect for one or all variables

 First, users need to define the dataset as a panel dataset using the xtset or tsset
command depending on the situation.

 The user would use the syntax L.variable name to include a lagged version of the
variable in a xtreg statement. The number of lags can be changed.

C. Outputting regression results
• After running a regression, users may wish to export the results of the regression to a

word document or use the results of a regression in a future analysis.

• Outreg2 using name of new file, replace type of file

 If outreg2 is not installed on the computer, use ssc install outreg2 to install the
software.

 If word is used as the type of file, Stata will output a word document with the Stata
formatted tables.

Page 19

• If the user wants to store part of the results in the active dataset, Stata provides a
way that users can access the values of a regression using macros.

 Users can use help reg to see the syntax for how to select various portions of the
regression output.

VI. Tips and Tricks
A. Macros

• Macros in Stata are variables that can be declared by a user that contain a string or
numeric value. They are also either defined as a global or local variable.

• global macro variable name macro variable value

 Global macro variables are accessible if the Stata session they are declared in is
open.

 A global variable can be called by using the $macro variable name syntax.

• local macro variable name macro variable value

 Unlike global macro variables, local macro variables are used for short term
storage of values.

 A local variable can be called by using the `macro variable name’ syntax. Note
that before the macro variable name, the “ ` “ is not an apostrophe, but at the end
the “ ‘ “ is an apostrophe.

• Macros have many uses such as loops and organizing working directories.

Figure 24: Benefits of using macros

Note: A macro variable is defined as 1. A macro variable can be used to hold a value as
shown with the di command or to combine in a variable name.

B. Other helpful commands
• Inrange & inlist

 Often when subsetting data, users may wish to have a list of strings or a range of
numeric values. The inlist and inrange make this possible for strings and numeric
values respectively.

Page 20

 For example, if the code “drop if inrange(price, 1.5,2) was used, all observations
with prices between the range of 1.5 and 2 would be removed from the dataset

• Assert

 The assert function is useful in scripts where the user wants to stop the script if
certain conditions are not met. Many users use an assert command after a merge
to confirm that a merge worked properly.

Figure 25: Proper use of the assert command

Note: As shown from the tabulate function, there is one observation that is greater than 2.
The assert command recognizes this and returns a contradiction.

• The *

 The asterisk can be used to “fill in the blanks” of a variable name. For example, if
a user wishes to drop all price variables (assume there are three variables for
price: price, price_1, price_2), the user could use the syntax drop price*.

• Quietly

 The quietly command can be used to suppress the default output to the results
section of the consol. This command is useful whenever the user does not want
any results to be outputted. The syntax is quietly function

• _n,_N, []

 The _n, _N, and [] notation are all related to the observation number within a
dataset.

 _n represents the index for a given observation in a dataset. For example, if the
user used the code “drop if _n > 10” Stata would remove all observations in the
dataset after the first 10 observations.

 _N represents the total number of observations in the dataset. In any dataset,
using the code “di _N” will reveal the total number of observations in the dataset.

 Finally, the [] notation can be used to obtain the value of a specific observation
within a variable. For example, if the user wants to find the value of the last
observation in the price variable, he or she could use the syntax “di price[_N]”.

Page 21

 Be cautious in using these commands because they are very dependent on how
the data is sorted.

• Set obs command

 The set obs number of observations command is useful if the user wants to create
a dataset from scratch. This command allows the user to specify how many
observations will be in this dataset

• Organizing folder structure

 If Stata is to be used regularly, it is helpful for every user to organize a folder
structure so that files are properly mapped. It is also typical to use macros when
working with multiple datasets or on multiple projects so that the paths to the data
do not have to be written more than once.

Figure 26: Do file showing proper use of macros to organize folder structure

Note: The first 5 l ines of the code create global macros so that the user does not need to
write down the fi le path whenever he or she is using the data. It is fair ly standard to have
4 folders for every project: one for do fi les called “scripts”, another for te mp fi les that save
temporary dtas, one for the raw data that will not be altered, and another for any output.

