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Abstract

We characterize the family of equal sacrifice rules for the problem of fair
taxation: every individual with positive post-tax income sacrifices the same
amount of utility relative to his/her respective pre-tax income. Because we do
not impose Symmetry or Strict Resource Monotonicity in our set of axioms,
our family of rules allows for asymmetric and “constrained” versions of equal
sacrifice. In addition, we show that when Linked Claims-Resource Monotonicity
is added to the set of axioms, then this is equivalent to adding the requirement
that every individual’s utility function is concave.
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Equality of taxation, therefore, as a maxim of politics, means equality
of sacrifice. It means apportioning the contribution of each person to-
wards the expenses of government, so that he shall feel neither more nor
less inconvenience from his share of the payment than every other person
experiences from his. This standard, like other standards of perfection,
cannot be completely realized; but the first object in every practical dis-
cussion should be to know what perfection is.

–Mill, Principles of Political Economy

1 Introduction

Consider the problem of fair taxation: Given a fixed amount of tax revenue that needs
to be raised, and given the amount of income that each citizen has, how much should
each citizen be taxed? This has long been a problem of interest to philosophers,
economists, and politicians. Indeed, discussions of fair taxation in the public sphere
often follow any proposal to modify the tax system.

One proposed method of fair taxation is to impose an equal amount of subjective
sacrifice on each individual. The idea of equal sacrifice as a notion of fairness can
be traced back to John Stuart Mill. The first axiomatic study of the equal sacrifice
principle applied to fair taxation is Young (1988). In that paper, Young considers the
family of symmetric and unconstrained equal sacrifice taxation methods (called rules).
A member of this family is defined by a utility function U which is continuous, strictly
increasing, and unbounded from below. The rule then chooses taxes owed by each
individual so that each individual’s utility loss is the same. That is, for individuals i
and j with pre-tax incomes ci and cj and post-tax incomes xi and xj, we have

U(ci)− U(xi) = U(cj)− U(xj).

Such a rule is symmetric in the sense that the same U is applied to all individuals.
The rule is unconstrained in the sense that it is always able to equalize sacrifice across
all individuals;1 there is never an instance in which the rule must impose less sacrifice
on an individual because it is impossible for the individual to pay more in taxes then
her income.

In this paper, we consider a more general family of equal sacrifice rules, one
that allows for both asymmetric and constrained rules. A member of this family
is defined by a collection of utility functions {Ui}, one for each individual, where
each Ui is continuous and strictly increasing (but not necessarily unbounded from
below). The rule then chooses taxes owed by each individual so that each individual
receiving strictly positive post-tax income will have the same utility loss. That is, for
individuals i and j with pre-tax incomes ci and cj and post-tax incomes xi > 0 and
xj > 0, we have

Ui(ci)− Ui(xi) = Uj(cj)− Uj(xj).
1This is due to the fact that U is unbounded from below. Thus for any utility loss λ, one can

always find a post-tax income level xi such that U(ci)− U(xi) = λ.
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This allows for asymmetric rules since Ui and Uj are potentially different utility
functions. In addition, the rule may be constrained in the sense that one individual
may experience less sacrifice than the others because the rule cannot assign a tax
more than an individual’s income. In this case, the individual’s assigned tax would
be equal to her income (leaving zero post-tax income), and thus we may have

Ui(ci)− Ui(0) < Uj(cj)− Uj(xj).

Our main theorem, Theorem 1, axiomatically characterizes this family of rules.
Our two most important axioms are prominent in the literature. The first, Consis-
tency, says that how a rule assigns taxes does not change when the group to be taxed
shrinks coupled with an appropriate shrinking of the tax burden. The second, Com-
position Down, says that if the total tax burden increases, then it is sufficient to use
current income (i.e. the post-tax income under the previous, smaller tax burden) to
determine the new assignment of taxes.

In addition, we impose a novel axiom which is weaker than Strict Claims Mono-
tonicity, a well-known axiom in the literature. Strict Claims Monotonicity states that
if one individual’s income increases, then her post-tax income should increase. We
impose this requirement as well, but only in instances in which everyone currently
has positive post-tax income. We call our axiom Lower Constrained Strict Claims
Monotonicity.

One common axiom obviously missing from this result is Symmetry, which states
that two individuals with equal income will be taxed equally. Theorem 3 shows
that when we add Symmetry to our set of axioms, the result is a generalization of
Young’s family that allows for constrained rules. Thus one contribution of this paper is
simply a better understanding the logical implications of Symmetry. That is, because
Symmetry invariably plays a central role in the proof of any theorem that employs
it, an important question is what happens without it. Theorem 1 and Theorem 3
together demonstrate that relaxing Symmetry (in the presence of our other axioms)
does nothing more than allow for different utility functions for the agents.2

Given the prominence of concave utility functions in economic theory, a natural
question is what implications concavity would have on our division rule. Theorem 4
shows that adding an axiom called Linked Claims-Resource Monotonicity to the set
of axioms from Theorem 1 is equivalent to adding the requirement that the utility
functions {Ui} all be concave. In the context of taxation, Linked Claims-Resource
Monotonicity is simply the requirement that when one individual’s pre-tax income
increases, then her tax burden must weakly increase.

Allowing for asymmetric equal sacrifice rules is a natural extension of Young’s
family of rules. However, allowing for asymmetry may also be desirable for normative
reasons. That is, for reasons of fairness, the taxing authority may want to treat
two individuals differently simply because they have different needs and situations.
Indeed, in the United States, one’s tax burden is determined by more than just pre-tax
income, such as the number of dependents the individual has. Given this observation,

2See Stovall (2014a) for an example in which relaxing Symmetry does not lead to a straightforward
result.
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one approach would be to extend the model to include all relevant information the
taxing authority uses to determine the assignment of taxes. However, to keep the
model broadly applicable to other contexts, as well as to make it easily comparable
to the existing literature, we keep the standard framework wherein only identities
and pre-tax income are used to determine the assignment of taxes.

Allowing for constrained versions of equal sacrifice rules is desirable given that the
most natural form of equal sacrifice is to simply impose the same tax on each indi-
vidual. However, to be valid, the rule must be constrained since someone cannot be
taxed more than their income. In the literature, this is referred to as the constrained
equal loss rule, though in the context of taxation it is commonly called the head tax.
Young’s family of rules excludes this central rule. However, the head tax is a member
of our family of rules.

Formally, the problem of fair taxation is identical to the problem of fair allocation
under conflicting claims: Given a fixed amount of a resource that must be divided
among a group, each individual of the group having some (objective) claim on the
resource, and given that the amount to be divided is not sufficient to satisfy all claims,
how should the resource be divided? Other examples of conflicting claims problems
are bankruptcy and cost sharing. Modern study of claims problems began with O’Neill
(1982). See Thomson (2003, 2015) for surveys of this literature. We consider the
present work part of this literature, and thus borrow much of its terminology (e.g.
in naming axioms, we use ‘resource’, ‘claims’, and ‘award’ instead of ‘tax burden’,
‘pre-tax income’, and ‘post-tax income’, respectively). We discuss this further in
section 2.

Besides Young’s paper, there are two other papers in the literature closely re-
lated to the present work. Chambers and Moreno-Ternero (2017) consider a general-
ized family of symmetric equal sacrifice rules that allows for constrained versions of
Young’s family. Naumova (2002) considers asymmetric equal sacrifice rules, but only
ones that are unconstrained. More broadly, the current work (like Naumova’s) adds
to the growing literature studying asymmetric rules for the claims problem: Cham-
bers (2006), Hokari and Thomson (2003), Kıbrıs (2012, 2013), Moulin (2000), and
Stovall (2014a,b) all consider rules that are (possibly) asymmetric. Of these papers,
only Stovall (2014a) is easily relatable to the family we characterize. We discuss these
related papers in more detail in section 4. For readers wishing to preview the rela-
tion between these other papers and the current work, Table 1 and Figure 1 provide
summaries.

2 The Model

We use the following notation. Let N denote the set of finite subsets of the natural
numbers, N. Let R+ and R++ denote the non-negative real numbers and the positive
real numbers respectively. Let 0 denote a vector of zeros. For x, y ∈ RN , we use the
vector inequalities x = y if xi ≥ yi for all i ∈ N , x ≥ y if x = y and x 6= y, and x > y
if xi > yi for every i ∈ N . For x ∈ RN and N ′ ⊂ N , let xN ′ denote the projection of
x onto the subspace RN ′ . For i ∈ N , let x−i denote xN\{i}.
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A problem is a tuple (N, c, E) where N ∈ N , c ∈ RN
++, and E ∈ [0,

∑
i ci]. An

award for the problem (N, c, E) is an N -vector x satisfying 0 5 x 5 c and
∑

i xi = E.
A rule is a function S that maps problems to awards.

In the context of taxation, we think of ci as being agent i’s pre-tax income and
E as representing the total amount of post-tax income. Thus

∑
i ci − E is the total

amount of tax to be collected. The requirement E ≤
∑

i ci says that the amount
of tax to be raised is positive, while the requirement E ≥ 0 says that it does not
exceed national income. An award xi for agent i is the amount of post-tax income
that i gets. Thus the requirement xi ≥ 0 says that an agent cannot be taxed more
than her income, while the requirement xi ≤ ci says that an agent’s income cannot
be subsidized by tax revenue. Finally the requirement that

∑
i xi = E combines the

feasibility requirement (
∑

i xi ≤ E) and the efficiency requirement (
∑

i xi ≥ E).
As mentioned in the introduction, a taxation problem is formally equivalent to

the problem of fair allocation under conflicting claims, the most prominent example
of such a problem being bankruptcy. In this context, ci is agent i’s claim on the
resource, while E is the total amount of the resource to be divided. The requirement
that E ≤

∑
i ci says that there is not enough of the resource to satisfy everyone’s

claim on it. We usually think of E as representing a resource that is desirable for all
agents, though this is not necessary. Indeed, an alternate way of thinking about a
problem is not how to divide the resource, but rather how to divide the loss among
the agents. That is,

∑
i ci−E represents the shortage, or loss, that must be divided.

This dual way of thinking about a problem brings us to the following definitions.

Definition. The dual of a problem (N, c, E) is the problem (N, c,
∑

i ci − E). The
dual of a rule S is the rule Sd satisfying Sd(N, c, E) = c−S(N, c,

∑
i ci−E) for every

problem (N, c, E). The dual of an axiom A is the axiom Ad such that S satisfies A if
and only if Sd satisfies Ad. An axiom A is self-dual if Ad = A.

Since our ultimate goal is to study fair taxation, it may seem like a roundabout
approach to study rules that allocate post-tax income rather than rules that allocate
taxes directly. However, to make our results more readily comparable to the literature
on conflicting claims, we adopt the perspective that the resource to be divided, E,
is desirable for the agents. Thus E represents the total amount of post-tax income.
Given the definitions above, it is a straightforward step to go from studying income
allocation rules to studying tax allocation rules. That is, if S is a post-tax income
allocation rule that satisfies axiom A, then Sd is a tax allocation rule that satisfies
axiom Ad.

We note that Young (1988) takes the opposite approach; i.e. the resource to be
divided is the total tax revenue, and is thus undesirable. Therefore any comparison
between Young’s results and ours should take this duality in to account.

2.1 Equal Sacrifice Rules

Let U denote the family of functions U : N × R++ → R such that, for any i ∈ N,
U(i, ·) is continuous and strictly increasing. Note that we may or may not have
limx→0 U(i, x) = −∞. From now on we write U(i, ·) as Ui.
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For any U ∈ U , we define the equal sacrifice rule relative to U to be the rule that
allocates by equalizing the utility loss of every agent (relative to their pre-tax income)
with the proviso that no agent is awarded a negative amount. Hence for any problem
(N, c, E), if i, j ∈ N both get positive awards (say xi and xj), then we must have
Ui(ci)− Ui(xi) = Uj(cj)− Uj(xj).

To define these rules formally, we introduce some notation. For every i, set u
¯i
≡

limx→0 Ui(x) and ūi ≡ limx→∞ Ui(x). Since Ui is continuous and strictly increasing,
it is invertible over (u

¯i
, ūi). Let U−1

i : (u
¯i
, ūi) → R++ denote the inverse function of

Ui. Let U−1
i denote the left-hand extension of U−1

i , i.e.

U−1
i (u) ≡

{
0 if u ≤ u

¯i
,

U−1
i (u) if u

¯i
< u < ūi.

Note that U−1
i is continuous, weakly increasing on (−∞, ūi), and strictly increasing

on [u
¯i
, ūi).

For U ∈ U , we define the rule ESU as follows. For any problem (N, c, E),

ESU(N, c, E) ≡
(
U−1
i (Ui(ci)− λ)

)
i∈N

,

where λ ≥ 0 is chosen so that
∑

i∈N U
−1
i (Ui(ci)− λ) = E.3 We say a rule S is an

equal sacrifice rule if there exists U ∈ U such that S = ESU . We say that U ∈ U is
an equal sacrifice representation of ESU . We use ES to denote the family of equal
sacrifice rules, i.e.

ES ≡
{
ESU : U ∈ U

}
.

The family of equal sacrifice rules contains some prominent rules. The proportional
rule, P , allocates post-tax income proportionally to pre-tax income; i.e.

P (N, c, E) =
E∑
i ci
c.

This is commonly referred to as the flat tax, where 1 − E∑
i ci

is the tax rate. The

proportional rule is an equal sacrifice rule where Ui(x) = Uj(x) = lnx for every
i, j ∈ N.

The constrained equal loss rule, CEL, imposes the same loss (i.e. tax) on every
individual as long as that tax is not more than their respective income; i.e. for i ∈ N ,

CELi(N, c, E) = max{0, ci − λ},
3Note that ESU is well-defined and a rule: For any i ∈ N, ci > 0, and λ ≥ 0, we must have 0 ≤

U−1i (Ui(ci)− λ) ≤ ci. Also, note that for any N ∈ N and c ∈ RN++, F (λ) ≡
∑
i∈N U

−1
i (Ui(ci)− λ)

is continuous and strictly decreasing, F (0) =
∑
i∈N ci, and limλ→∞ F (λ) = 0. Thus for E > 0, there

exists a unique λ∗ ≥ 0 such that F (λ∗) = E. For E = 0, then it is possible that there exists λ′ and
λ′′ such that F (λ′) = F (λ′′) = 0. However, both λ′ and λ′′ would assign the same award, namely 0
for everyone.
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where λ (the common tax imposed on everyone) is chosen so that
∑

iCELi(N, c, E) =
E. This is commonly referred to as the head tax. The constrained equal loss rule is
an equal sacrifice rule where Ui(x) = Uj(x) = x for every i, j ∈ N.

One intriguing equal sacrifice rule is the following. For every i ∈ N, set

Ui(x) = −(wi + x)−ri ,

for wi > 0 and ri > 0. In this instance, we can think of wi as representing agent i’s
wealth level and ri as representing her measure of relative risk aversion. This rule
would be, in general, asymmetric and constrained.

2.2 Axioms

Our first three axioms are standard in the literature.

Continuity. For every problem (N, c, E), for every sequence of problems {(N, cm, Em)},
if (N, cm, Em)→ (N, c, E) then S(N, cm, Em)→ S(N, c, E).

Continuity simply requires that the rule be jointly continuous in total post-tax
income and the vector of pre-tax incomes.

Consistency. For every problem (N, c, E), if N ′ ⊂ N and x = S(N, c, E), then
xN ′ = S(N ′, cN ′ ,

∑
N ′ xj).

Consistency imposes a restriction on the rule when the group shrinks. It says that
how a rule assigns post-tax income among a subpopulation should not change when
considered as a separate problem, fixing the total amount of post-tax income for that
subpopulation.

Composition Down. For every problem (N, c, E), if E ′ ∈ (E,
∑

N cj] and S(N, c, E ′) >
0, then S(N, c, E) = S(N,S(N, c, E ′), E).

Imagine a scenario in which total post-tax income was determined to be E ′. Cit-
izens subsequently pay their respective assigned tax, leaving the post-tax allocation
S(N, c, E ′). Then it is discovered that the requisite tax revenue is larger than initially
determined, decreasing total post-tax income to E. Composition Down says that the
new post-tax income allocation can be determined either by using everyone’s original
income (i.e. c) or their previous post-tax income (i.e. S(N, c, E ′)); both methods will
yield the same result. After all, if the rule S deemed S(N, c, E ′) to be a fair way
to allocate post-tax income under E ′, then it is reasonable to consider S(N, c, E ′) as
having all the necessary information to allocate post-tax income under E.

Our final axiom is, to our knowledge, new to the literature.

Lower Constrained Strict Claims Monotonicity (LCSM-Claims). For every
problem (N, c, E) and i ∈ N , if c′i > ci and S(N, c, E) > 0, then Si(N, (c

′
i, c−i), E) >

Si(N, c, E).
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LCSM-Claims says that as long as everyone has positive post-tax income, then
if one agent’s pre-tax income increases, that agent’s post-tax income must increase.
LCSM-Claims is similar to the standard Claims Monotonicity axiom and its strict
version.

Claims Monotonicity. For every problem (N, c, E) and i ∈ N , if c′i > ci, then
Si(N, (c

′
i, c−i), E) ≥ Si(N, c, E).

Strict Claims Monotonicity. For every problem (N, c, E) and i ∈ N , if c′i > ci,
then Si(N, (c

′
i, c−i), E) > Si(N, c, E).

Obviously Strict Claims Monotonicity implies LCSM-Claims. By itself, LCSM-
Claims does not imply Claims Monotonicity. However when coupled with Continuity
and Consistency, then LCSM-Claims does imply Claims Monotonicity.4

Lemma 1. If S satisfies Continuity, Consistency, and LCSM-Claims, then S satisfies
Claims Monotonicity.

Proof. By way of contradiction, suppose not. Thus there exists (N, c, E), i ∈ N ,
and c′i > ci, such that Si(N, (c

′
i, c−i), E) < Si(N, c, E). Set x = S(N, c, E) and

x′ = S(N, (c′i, c−i), E). Since xi > x′i, there must exist j ∈ N such that x′j > xj.
Consistency implies (xi, xj) = S({i, j}, (ci, cj), E) and (x′i, x

′
j) = S({i, j}, (c′i, cj), E).

Obviously xi > 0 and x′j > 0. However, because of Continuity, we can assume x′i > 0
and xj > 0 without loss of generality. Hence we have xi > x′i > 0 and x′j > xj > 0.
But this violates LCSM-Claims.

Necessary But Not Sufficient

We conclude this section with a brief discussion of some axioms that are necessary,
but not sufficient, for an equal sacrifice rule. It is trivial to show that Composition
Down implies monotonicity in the total post-tax income.

Resource Monotonicity. For every problem (N, c, E), if E ′ ∈ (E,
∑

N cj], then
S(N, c, E ′) ≥ S(N, c, E).

Lemma 2. If S satisfies Composition Down, then S satisfies Resource Monotonicity.

However, equal sacrifice rules satisfy an even stronger axiom than Resource Mono-
tonicity.

Lower Constrained Strict Resource Monotonicity (LCSM-Resource). For
every problem (N, c, E), if E ′ ∈ (E,

∑
N cj] and S(N, c, E) > 0, then S(N, c, E ′) >

S(N, c, E).

LCSM-Resource is similar in nature to LCSM-Claims. It says that as long as
everyone has positive post-tax income, then increases in total post-tax income (i.e.
decreases in the tax burden) will benefit all agents. It is not required that we include
this axiom in our main result as it is implied by our other axioms.

4Claims Monotonicity is also implied by Composition Down and Consistency.
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Lemma 3. If S satisfies Consistency, Composition Down, and LCSM-Claims, then
S satisfies LCSM-Resource.

Proof. By way of contradiction, suppose S does not satisfy LCSM-Resource. I.e.
there exists (N, c, E), E ′ ∈ (E,

∑
N cj], and i ∈ N such that S(N, c, E) > 0 and

xi ≡ Si(N, c, E) ≥ Si(N, c, E
′). By Lemma 2, we must have xi = Si(N, c, E

′). Since
E ′ > E, there exists j ∈ N such that xj ≡ Sj(N, c, E) < Sj(N, c, E

′) ≡ x′j. By Con-
sistency, (xi, xj) = S({i, j}, (ci, cj), xi+xj) and (xi, x

′
j) = S({i, j}, (ci, cj), xi+x′j). By

Composition Down, xj = Sj({i, j}, (xi, x′j), xi +xj). However, this implies a violation
of LCSM-Claims since xj = Sj({i, j}, (xi, xj), xi + xj).

3 Results

We now state our main results. Proofs for the following theorems are given in the
appendix.

Theorem 1. The rule S satisfies Continuity, Consistency, Composition Down, and
LCSM-Claims if and only if S ∈ ES.

The following examples illustrate the extent to which the listed axioms are inde-
pendent. For each axiom below, we give a rule which violates that axiom but satisfies
the others in Theorem 1.

� Consistency. A rule that divides according to the flat tax for all two-person
groups and according to the head tax for all groups larger than two.

� Composition Down. The symmetric parametric rule, S, with the parametric
function5

f(c0, λ) =


c0

1−λc0 if λ < − 1
c0

,
c0
2

if − 1
c0
≤ λ ≤ 1

c0
,

c0 − c0
1+λc0

if λ > 1
c0

.

Because S is a parametric rule, it satisfies Continuity and Consistency. Also,
because f is strictly increasing in c0, S must satisfy Strict Claims Monotonicity,
which in turn implies that S must satisfy LCSM-Claims. However, S does not
satisfy Composition Down. To see this, note that S({1, 2}, (6, 2), 4) = (3, 1),
yet(

3

2
,
1

2

)
= S({1, 2}, (3, 1), 2) 6= S({1, 2}, (6, 2), 2) =

(
6

2 +
√

10
,

6

4 +
√

10

)
.

� LCSM-Claims. The leveling tax : This tax assigns the same post-tax income
to all agents, with the proviso that no agent’s post-tax income is more than
their respective pre-tax income. This is also called the constrained equal awards
rule in the conflicting claims literature.

5The family of symmetric parametric rules is characterized in Young (1987). See section 4 for a
discussion of this family.
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It is an open question whether Continuity is independent of the other axioms.
However, we note that it is easy to show that Composition Down implies continuity
in the total post-tax income E. Thus the only question is whether continuity in the
pre-tax income vector c is implied by the other axioms.

An important question regarding the equal sacrifice rules is: To what extent is an
equal sacrifice representation unique? This is answered by the next theorem.

Theorem 2. Suppose S ∈ ES has two representations: U, V ∈ U . Then there exist
α ∈ R++ and β ∈ RN such that Vi = αUi + βi for every i.

Thus only certain manipulations of the equal sacrifice representation are allowed
without changing the underlying rule. Namely, the individual utility functions may
be rescaled by a common factor. Also, each utility function may be shifted by any
amount.

A special case of the family of equal sacrifice rules are those that are symmetric
in the sense that every individual is assigned the same utility function. I.e. Ui = Uj
for all i, j ∈ N. Let ES∗ denote the family of symmetric equal sacrifice rules. The
following axiom is implied by the family of symmetric equal sacrifice rules.

Symmetry. For every problem (N, c, E) and i, j ∈ N , if ci = cj, then Si(N, c, E) =
Sj(N, c, E).

This axiom imposes the requirement that individuals with the same pre-tax income
will have the same post-tax income (which implies the same tax for these individu-
als). In conjunction with our other axioms, Symmetry is also sufficient to guarantee
symmetric equal sacrifice rules.

Theorem 3. The rule S satisfies Continuity, Consistency, Composition Down, LCSM-
Claims, and Symmetry if and only if S ∈ ES∗.

We conclude with a result that examines what is needed to guarantee that the
equal sacrifice representation of a rule is concave.

Linked Claims-Resource Monotonicity. For every problem (N, c, E) and i ∈ N ,
if h > 0, then h ≥ Si(N, (ci + h, c−i), E + h)− Si(N, c, E).

In the context of taxation, Linked Claims-Resource Monotonicity says that if an
agent’s pre-tax income increases, then her tax burden must weakly increase. It is
easy to show that Linked Claims-Resource Monotonicity is the dual to Claims Mono-
tonicity.6 This is enough to guarantee concave utility functions.

Theorem 4. The rule ESU satisfies Linked Claims-Resource Monotonicity if and
only if Ui is concave for every i.

6See Thomson and Yeh (2008) for further discussion of this result, as well as the duality operator
in general.
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4 Related Literature

The family of equal sacrifice rules is a special case of the family of parametric rules
characterized by Stovall (2014a). A parametric rule is defined by a continuous function
f : N × R++ × [a, b] → R+, where −∞ ≤ a < b ≤ ∞, such that (i) f is weakly
increasing in the third argument, and (ii) for every i ∈ N and c0 ∈ R++ we have
f (i, c0, a) = 0 and f (i, c0, b) = c0. A division rule Parf is defined as follows. For
every (N, c, E) and for every i ∈ N ,

Parfi (N, c, E) ≡ f (i, ci, λ) ,

where λ is chosen so that
∑

N f (i, ci, λ) = E.7 The axioms that characterize the
family of parametric rules are Continuity, Consistency, Resource Monotonicity, as
well as two other technical axioms referred to as Intrapersonal Consistency and N-
Continuity. Let P denote the family of parametric rules.

An important special case of this family is the family of symmetric parametric
rules, originally characterized by Young (1987). The axioms that characterize the
family of symmetric parametric rules are Continuity, Consistency, and Symmetry.
Let P∗ denote the family of symmetric parametric rules.

It is easy to see that ES ⊂ P . Let a = −∞ and b = 0. Then for U ∈ U and for
every i ∈ N, define the parametric function

f(i, ci, λ) ≡ U−1
i (Ui(ci) + λ) .

(Similarly, we have ES∗ ⊂ P∗.) Thus it must be (though we do not show this directly)
that the set of axioms used in Theorem 1 imply the two technical axioms used by
Stovall (2014a), Intrapersonal Consistency and N-Continuity.

We turn now to the papers most closely related to the present work. To aid in the
discussion, we introduce some notation. Let ÊS denote the family of unconstrained
equal sacrifice rules. I.e. ESU ∈ ÊS if U ∈ U satisfies limx→0 Ui(x) = −∞ for all

i ∈ N. Set ÊS
∗
≡ ES∗ ∩ ÊS, which is the family of symmetric unconstrained equal

sacrifice rules. (Thus an asterisk denotes a family that is symmetric, while a hat
denotes a family that is unconstrained.)

Young (1988) provides a characterization of ÊS
∗
. The axioms he used are Continu-

ity, Consistency, Composition Down, Symmetry, and two other axioms not yet intro-
duced called Strict Resource Monotonicity and Strict Order Preservation of Awards.

Strict Resource Monotonicity. For every problem (N, c, E), if E ′ ∈ (E,
∑

N cj],
then S(N, c, E ′) > S(N, c, E).

Strict Order Preservation of Awards. For every problem (N, c, E), if i, j ∈ N ,
ci > cj, and E > 0, then Si(N, c, E) > Sj(N, c, E).

Lemma 4. Suppose S satisfies Continuity, Consistency, and Symmetry. Then S
satisfies Strict Order Preservation of Awards if and only if S satisfies Strict Claims
Monotonicity.

7This rule is well-defined because such a λ always exists, and if there are multiple such lambdas,
the underlying allocation is the same for them.
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Proof. Applying Young (1987, Theorem 1), S is a symmetric parametric rule. Let f
denote the parametric representation of S. It is not hard to see that S satisfies Strict
Order Preservation of Awards if and only if for any λ, f(c0, λ) is strictly increasing in
c0. Similarly, S satisfies Strict Claims Monotonicity if and only if for any λ, f(c0, λ)
is strictly increasing in c0. Thus S satisfies Strict Order Preservation of Awards if
and only if S satisfies Strict Claims Monotonicity.

We can easily modify the proof of Lemma 3 to get the following result.

Lemma 5. If S satisfies Consistency, Composition Down, and Strict Claims Mono-
tonicity, then S satisfies Strict Resource Monotonicity.

Together, Lemma 4 and Lemma 5 imply the following alternate (and slightly

tighter) characterization of the family ÊS
∗
.

Theorem 5 (Alternate to Young (1988, Theorem 1)). The rule S satisfies Continu-
ity, Consistency, Composition Down, Strict Claims Monotonicity, and Symmetry if

and only if S ∈ ÊS
∗
.

Chambers and Moreno-Ternero (2017) characterize a family of rules which con-
tains (but is broader than) ES∗. Combining their nomenclature with ours, we will
refer to the family they characterize as the generalized symmetric equal sacrifice rules,
denoted GES∗. The axioms that characterize this family of rules are Continuity, Con-
sistency, Composition Down, and Symmetry. Given this characterization, it is easy
to see that ES∗ ⊂ GES∗ ⊂ P∗.

Naumova (2002) provides a characterization of ÊS. However, her definition of a
problem is broader than the one we consider, allowing for the possibility of surplus
sharing.8 Because of this, her main axiom, called Path Independence, is stronger
than Composition Down. Not only this, but Path Independence implies Strict Claims
Monotonicity, though this is not explicitly shown by Naumova. Also, Strict Resource
Monotonicity is explicitly imposed. However, given Lemma 5 and Theorem 1, the
following alternate characterization of ÊS can easily be proven.

Theorem 6 (Alternate to Naumova (2002, Theorem 2.1)). The rule S satisfies Con-
tinuity, Consistency, Composition Down, and Strict Claims Monotonicity if and only
if S ∈ ÊS.

Table 1 summarizes this discussion by listing the axioms each of the above families
of rules respectively satisfy. Figure 1 illustrates the logical relationships between
these families. Returning to the examples given at the end of subsection 2.1, the

proportional rule is a member of ÊS
∗

and the constrained equal loss rule is a member
of ES∗. The third example given is a member of ES.

We conclude with the following observation. As pointed out by Young (1988,
p.322), there are other ways to interpret the principle of equal sacrifice. For example,
one may wish to instead equalize marginal sacrifice across individuals. However, since

8A surplus sharing problem is similar to a conflicting claims problem, but where E ≥
∑
i ci.
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P P∗ ES GES∗ ES∗ ÊS ÊS
∗

Continuity ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
N-Continuity ⊕ + + + + + +
Consistency ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Intrapersonal Consistency ⊕ + + + + + +
Symmetry − ⊕ − ⊕ ⊕ − ⊕
Composition Down − − ⊕ ⊕ ⊕ ⊕ ⊕
Claims Monotonicity − − + + + + +
LCSM-Claims − − ⊕ − ⊕ + +
Strict Claims Monotonicity − − − − − ⊕ ⊕
Resource Monotonicity ⊕ + + + + + +
LCSM-Resource − − + − + + +
Strict Resource Monotonicity − − − − − + +

Source [1] [2] [3] [4] [5] [6] [7]
[1] Stovall (2014a, Theorem 1).
[2] Young (1987, Theorem 1).
[3] Theorem 1.
[4] Chambers and Moreno-Ternero (2017, Theorem 1).
[5] Theorem 3.
[6] Theorem 6, which is an alternate characterization of the family studied
by Naumova (2002, Theorem 2.1).
[7] Theorem 5, which is a tighter result based off Young (1988, Theorem
1).

Table 1: Summary of families of rules and axioms. The symbols
+ and − indicate the axiom is necessary and not necessary, respectively.
For any column, the set of axioms indicated by ⊕ are necessary and suf-
ficient for the given family.

the marginal sacrifice of another dollar of taxation is identical to the marginal utility
of another dollar of income, this equates to simply choosing post-tax income so as to
maximize the sum of utilities. This is exactly the method of rules characterized by
Stovall (2014b).
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Young
(1988)

Figure 1: Diagram of logical relation among families of rules.
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Appendix

A Notation

For any set A, let Ao denote the interior of A. Let D denote the set of (non-negative)
dyadic rationals, i.e.

D ≡
{m

2n
: m,n ∈ N ∪ {0}

}
.

For an interval [a, b] and K = N,D, etc. let K[a, b] denote the set K ∩ [a, b]. Similar
notation will be used for open or unbounded intervals.

Definition. For a < b and M ∈ N, we say {ym}Mm=0 is an M-partition of [a, b] if

a = y0 < y1 < . . . < yM−1 < yM = b.

B Proof of Theorem 1

Proving that the axioms are necessary is a straightforward exercise. Thus we only
show that the axioms are sufficient to yield an equal sacrifice representation. So,
let S satisfy Continuity, Consistency, Composition Down, and LCSM-Claims. By
Lemma 3, S also satisfies LCSM-Resource.

B.1 Definitions and Preliminary Results

Define
Y ≡ {(i, ci, xi) : i ∈ N, 0 < xi ≤ ci}.

We call (i, ci, xi) ∈ Y a situation. We think of a situation (i, ci, xi) as describing an
agent i, her pre-tax income ci, and her post-tax income xi. Define the binary relation
% over Y :

(i, ci, xi) % (j, cj, xj) if Si({i, j}, (ci, cj), xi + xj) ≥ xi.

Let ∼ and � denote the symmetric and asymmetric parts of % respectively. Note
that (i, ci, xi) ∼ (j, cj, xj) if and only if S({i, j}, (ci, cj), xi + xj) = (xi, xj). In fact,
Consistency implies the following result.

Lemma 6. Suppose x = S(N, c, E). Then for every i, j ∈ N such that xi, xj > 0, we
have (i, ci, xi) ∼ (j, cj, xj).

The next two lemmas will be invoked often. We omit their proofs as they follow
easily from Continuity, LCSM-Resource, and LCSM-Claims.

Lemma 7. Suppose (i, ci, xi) � (j, cj, xj). Then xi < ci and there exists a unique
x′i ∈ (xi, ci] such that (i, ci, x

′
i) ∼ (j, cj, xj). Moreover, x′i = ci if and only if xj = cj.

Lemma 8. Suppose (i, ci, xi) ∼ (j, cj, xj). Then

(i) (i, ci, x
′
i) � (j, cj, xj) for every x′i ∈ (0, xi);
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(ii) (i, ci, xi) � (j, cj, x
′
j) for every x′j ∈ (xj, cj]; and

(iii) (i, ci, xi) � (j, c′j, xj) for every c′j ∈ [xj, cj).

Lemma 9. Suppose (i, ci, xi) ∼ (j, cj, xj).

(i) For every x′j ∈ [xj, cj], there exists a unique x̂i(x
′
j) ∈ [xi, ci] such that (i, ci, x̂i(x

′
j)) ∼

(j, cj, x
′
j). Moreover, x̂i(x

′
j) is continuous and strictly increasing, with x̂i(xj) =

xi and x̂i(cj) = ci.

(ii) For every c′j ∈ [xj, cj], there exists a unique x̂i(c
′
j) ∈ [xi, ci] such that (i, ci, x̂i(c

′
j)) ∼

(j, c′j, xj). Moreover, x̂i(c
′
j) is continuous and strictly decreasing, with x̂i(xj) =

ci and x̂i(cj) = xi.

Proof. (i) The existence of x̂i(x
′
j) follows easily from Lemma 7 and item (ii) of

Lemma 8. LCSM-Resource and Continuity imply that x̂i(x
′
j) is strictly increasing

and continuous.
(ii) The existence of x̂i(c

′
j) follows easily from Lemma 7 and item (iii) of Lemma 8.

LCSM-Claims and Continuity imply that x̂i(c
′
j) is strictly decreasing and continuous.

The next two lemmas establish that ∼ is transitive.

Lemma 10. Suppose (i, ci, xi) ∼ (j, cj, xj) ∼ (k, ck, xk), where i 6= k. Then there
exists E such that

S({i, j, k}, (ci, cj, ck), E) = (xi, xj, xk).

Proof. By Continuity, there exists E such that Si({i, j, k}, (ci, cj, ck), E) = xi. Let
x′j = Sj({i, j, k}, (ci, cj, ck), E) and x′k = Sk({i, j, k}, (ci, cj, ck), E). Consistency then
implies (xi, xj) = S({i, j}, (ci, cj), xi + x′j), or (i, ci, xi) ∼ (j, cj, x

′
j). Since (i, ci, xi) ∼

(j, cj, xj), item (i) of Lemma 9 then implies x′j = xj. Similarly, we can show x′k =
xk.

Lemma 11. Suppose (i, ci, xi) ∼ (j, cj, xj) ∼ (k, ck, xk), where i 6= k. Then (i, ci, xi) ∼
(k, ck, xk).

Proof. This follows directly from Lemma 6 and Lemma 10.

The final lemma in this subsection establishes the existence of what we think of
as a ‘halfway point’ between a claims vector and its associated awards vector.

Lemma 12. Let (N, x1, E) be a problem where |N | ≥ 3. Suppose x0 = S(N, c, E) >
0. Then there exists a unique x1/2 satisfying x0 < x1/2 < x1 such that for any i, j ∈ N
and m,m′ ∈ {1, 2}, we have

(i, x
m/2
i , x

(m− 1)/2
i ) ∼ (j, x

m′/2
j , x

(m′ − 1)/2
j ).
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Proof. Fix i, j ∈ N . By Lemma 6, (i, x1
i , x

0
i ) ∼ (j, x1

j , x
0
j). By item (i) of Lemma 9,

there exists x̂i(·) continuous and strictly increasing such that for any a ∈ [x0
j , x

1
j ],

we have (i, x1
i , x̂i(a)) ∼ (j, x1

j , a). Note that when a = x0
j , then x̂i(a) = x0

i , so
(j, x1

j , a) � (i, x̂i(a), x0
i ) by item (iii) of Lemma 8. Also, when a = x1

j , then x̂i(a) = x1
i ,

so (i, x̂i(a), x0
i ) � (j, x1

j , a) by part (ii) of Lemma 8.

Because S and x̂i are continuous, there exists x
1/2
j ∈ (x0

j , x
1
j) such that (j, x1

j , x
1/2
j ) ∼

(i, x̂i(x
1/2
j ), x0

i ). Set x
1/2
i = x̂i(x

1/2
j ) ∈ (x0

i , x
1
i ). Thus (i, x1

i , x
1/2
i ) ∼ (j, x1

j , x
1/2
j ) ∼

(i, x
1/2
i , x

0
i ). Since (i, x1

i , x
0
i ) ∼ (j, x1

j , x
0
j) and (i, x1

i , x
1/2
i ) ∼ (j, x1

j , x
1/2
j ), Composition

Down implies (i, x
1/2
i , x

0
i ) ∼ (j, x

1/2
j , x

0
j). Thus we have

(i, x1
i , x

1/2
i ) ∼ (j, x1

j , x
1/2
j ) ∼ (i, x

1/2
i , x

0
i ) ∼ (j, x

1/2
j , x

0
j).

Now fix k ∈ N \ {i, j}. By Lemma 6, (k, x1
k, x

0
k) ∼ (j, x1

j , x
0
j). By item (i) of

Lemma 9, there exists x
1/2
k = x̂k(x

1/2
j ) ∈ (x0

k, x
1
k) such that (k, x1

k, x
1/2
k ) ∼ (j, x1

j , x
1/2
j ).

Repeatedly applying Lemma 11 gives (k, x1
k, x

1/2
k ) ∼ (j, x

1/2
j , x

0
j) and (k, x1

k, x
1/2
k ) ∼

(i, x1
i , x

1/2
i ). But then applying Lemma 11 one more time gives (i, x1

i , x
1/2
i ) ∼ (j, x

1/2
j , x

0
j).

Thus we have

(i, x1
i , x

1/2
i ) ∼ (j, x1

j , x
1/2
j ) ∼ (i, x

1/2
i , x

0
i ) ∼ (j, x

1/2
j , x

0
j) ∼ (i, x1

i , x
1/2
i ).

Indeed, similar reasoning yields

(k, x1
k, x

1/2
k ) ∼ (j, x1

j , x
1/2
j ) ∼ (k, x

1/2
k , x

0
k) ∼ (j, x

1/2
j , x

0
j) ∼ (k, x1

k, x
1/2
k ).

A similar process can show the above relations for any two agents in N .

B.2 Measuring a Situation

In this subsection, we establish a way of measuring a situation. Roughly, this is done
by arbitrarily choosing three situations that are equivalent under ∼ to be the unit.
For each of these ‘units’, the dyadic set is defined by recursively applying Lemma 12.
This will allow us to measure situations that are ‘less’ than the unit. Thus the measure
of a given situation will be the number of times the unit ‘covers’ the given situation.

Fix x1 ∈ R3
++. By LCSM-Resource, there exists E ∈ (0,

∑3
i=1 x

1
i ) such that

x0 ≡ S({1, 2, 3}, x1, E) > 0.
For i ∈ {1, 2, 3}, define the function xi : D[0, 1] → [x0

i , x
1
i ] recursively as follows.9

Set xi(0) = x0
i , xi(1) = x1

i . For n = 1, 2, . . . and m ∈ N[1, 2n−1], let xi
(

2m−1
2n

)
∈(

xi
(

2m−2
2n

)
, xi
(

2m
2n

))
denote the unique numbers from Lemma 12 satisfying(

i, xi
(

2m−m′
2n

)
, xi
(

2m−m′−1
2n

))
∼
(
j, xj

(
2m−m′′

2n

)
, xj
(

2m−m′′−1
2n

))
(1)

for j ∈ {1, 2, 3} \ i and m′,m′′ ∈ {0, 1}.
9The use of the group {1, 2, 3} is arbitrary. What is necessary is having a group of at least three

agents so as to take full advantage of the implications of Consistency.
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Lemma 13. For any n ∈ N[2,∞), m ∈ N[2, 2n−1], and i, j ∈ {1, 2, 3},(
i, xi

(
2m−1

2n

)
, xi
(

2m−2
2n

))
∼
(
j, xj

(
2m−2

2n

)
, xj
(

2m−3
2n

))
.

Proof. Fix n ∈ N[2,∞) and m ∈ N[2, 2n−1]. For any i, j ∈ {1, 2, 3}, (1) implies(
i, xi

(
2m−1

2n

)
, xi
(

2m−2
2n

))
∼
(
j, xj

(
2m−1

2n

)
, xj
(

2m−2
2n

))
(2)

and (
i, xi

(
2m−2

2n

)
, xi
(

2m−3
2n

))
∼
(
j, xj

(
2m−2

2n

)
, xj
(

2m−3
2n

))
. (3)

Composition Down then implies(
i, xi

(
2m−1

2n

)
, xi
(

2m−3
2n

))
∼
(
j, xj

(
2m−1

2n

)
, xj
(

2m−3
2n

))
.

Since this holds for all i, j ∈ {1, 2, 3}, Lemma 10 and Lemma 12 imply the existence of
a unique half-point. But (2) and (3) then imply that this half-point must be xi(

2m−2
2n

)
for i ∈ {1, 2, 3}. Thus Lemma 12 gives the desired result.

Lemma 14. For any n ∈ N, m,m′ ∈ N[1, 2n], and i, j ∈ {1, 2, 3}(
i, xi

(
m
2n

)
, xi
(
m−1
2n

))
∼
(
j, xj

(
m′

2n

)
, xj
(
m′−1

2n

))
.

Proof. For n = 1, the result is true by (1). So assume n ≥ 2. Without loss of
generality, assume m > m′.

Case 1: m is odd, i.e. m = 2m̂− 1 for some m̂ ∈ N[2, 2n−1]. Then by Lemma 13(
i, xi

(
m
2n

)
, xi
(
m−1
2n

))
∼
(
j, xj

(
m−1
2n

)
, xj
(
m−2
2n

))
.

Equation (1) then implies(
j, xj

(
m−1
2n

)
, xj
(
m−2
2n

))
∼
(
i, xi

(
m−2
2n

)
, xi
(
m−3
2n

))
.

Repeatedly applying Lemma 13 and (1) yields a chain of relations∼ from
(
i, xi

(
m
2n

)
, xi
(
m−1
2n

))
to
(
j, xj

(
m′

2n

)
, xj
(
m′−1

2n

))
. Moreover, these relations hold for all i, j ∈ {1, 2, 3}. Re-

peated application of Lemma 11 then yields the desired result.
Case 2: m is even. The proof is similar to the first case, only applying (1) first

and then Lemma 13 second.

Lemma 15. Let d, d′, d̂, d̂′ ∈ D[0, 1] satisfy d − d′ = d̂ − d̂′ > 0. Then for any
i, j ∈ {1, 2, 3}, we have

(i, xi(d), xi(d
′)) ∼ (j, xj(d̂), xj(d̂

′)).

Proof. Since d, d′, d̂, d̂′ ∈ D[0, 1] and d−d′ = d̂−d̂′, there exists n ∈ N, m, m̂ ∈ N[1, 2n],
and m̄ ∈ N[1,min{m, m̂}] such that d = m

2n
, d′ = m−m̄

2n
, d̂ = m̂

2n
, and d̂′ = m̂−m̄

2n
.

By Lemma 14, we have(
i, xi

(
m
2n

)
, xi
(
m−1
2n

))
∼
(
j, xj

(
m̂
2n

)
, xj
(
m̂−1
2n

))
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for any i, j ∈ {1, 2, 3}. Similarly, we have(
i, xi

(
m−1
2n

)
, xi
(
m−2
2n

))
∼
(
j, xj

(
m̂−1
2n

)
, xj
(
m̂−2
2n

))
.

Composition Down then implies(
i, xi

(
m
2n

)
, xi
(
m−2
2n

))
∼
(
j, xj

(
m̂
2n

)
, xj
(
m̂−2
2n

))
.

Continuing in this way, we have(
i, xi

(
m
2n

)
, xi
(
m−m̄

2n

))
∼
(
j, xj

(
m̂
2n

)
, xj
(
m̂−m̄

2n

))
,

or
(i, xi(d), xi(d

′)) ∼ (j, xj(d̂), xj(d̂
′)),

as desired.

Now for i ∈ {1, 2, 3}, we extend xi from D[0, 1] to [0, 1]: For a ∈ [0, 1], set

xi(a) = sup{xi(d) : d ∈ D[0, 1] and d ≤ a}.

The density of D in R in conjunction with Continuity and LCSM-Resource imply the
following.

Lemma 16. For i ∈ {1, 2, 3}, the function xi : [0, 1] → [x0
i , x

1
i ] is continuous and

strictly increasing.

The following lemma follows easily from Lemma 15.

Lemma 17. Let a, b, â, b̂ ∈ [0, 1] satisfy b−a′ = b̂−â > 0. Then for any i, j ∈ {1, 2, 3},
we have

(i, xi(b), xi(a)) ∼ (j, xj(b̂), xj(â)).

For i ∈ {1, 2, 3}, let ui denote the inverse of xi. I.e. for x ∈ [x0
i , x

1
i ], we have

ui(x) = a if xi(a) = x. Lemma 16 then implies the following lemma.

Lemma 18. For i ∈ {1, 2, 3}, the function ui : [x0
i , x

1
i ] → [0, 1] is continuous and

strictly increasing.

Lemma 19. Fix i, j ∈ {1, 2, 3}, x̂i, x̂′i ∈ [xi(0), xi(1)], and x̂j, x̂
′
j ∈ [xj(0), xj(1)].

Then (i, x̂i, x̂
′
i) ∼ (j, x̂j, x̂

′
j) if and only if ui(x̂i)− ui(x̂′i) = uj(x̂j)− uj(x̂′j).

Proof. (⇒) By way of contradiction and without loss of generality, suppose ui(x̂i)−
ui(x̂

′
i) > uj(x̂j)− uj(x̂′j). Since ui is continuous and strictly increasing by Lemma 18,

there exists a unique x̂′′i ∈ (x̂′i, x̂i) such that ui(x̂i) − ui(x̂
′′
i ) = uj(x̂j) − uj(x̂

′
j).

Lemma 17 then implies

(i, xi(ui(x̂i)), xi(ui(x̂
′′
i ))) ∼ (j, xj(uj(x̂j)), xj(uj(x̂

′
j))),

or
(i, x̂i, x̂

′′
i ) ∼ (j, x̂j, x̂

′
j).

But since x̂′′i > x̂′i, item (i) of Lemma 8 implies (i, x̂i, x̂
′
i) � (j, x̂j, x̂

′
j), which is a

contradiction.
(⇐) This direction is a direct result of Lemma 17.
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Lemma 20. Fix i ∈ {1, 2, 3}. Let x̂i, x̂
′
i, x̄i, x̄

′
i ∈ [xi(0), xi(1)] and (j, cj, xj) ∈ Y

satisfy j 6= i and
(i, x̂i, x̂

′
i) ∼ (j, cj, xj) ∼ (i, x̄i, x̄

′
i).

Then ui(x̂i)− ui(x̂′i) = ui(x̄i)− ui(x̄′i).

Proof. Choose k ∈ {1, 2, 3} \ {i, j}. Since uk is strictly increasing and continuous
by Lemma 18, there exists a unique x̂k ∈ [xk(0), xk(1)] such that uk(x̂k) = ui(x̂i) −
ui(x̂

′
i). Since uk(xk(0)) = 0, this means uk(x̂k) − uk(xk(0)) = ui(x̂i) − ui(x̂

′
i), so

by Lemma 19 we have (k, x̂k, xk(0)) ∼ (i, x̂i, x̂
′
i). Lemma 11 applied twice implies

(k, x̂k, xk(0)) ∼ (i, x̄i, x̄
′
i). Lemma 19 implies uk(x̂k) − uk(xk(0)) = ui(x̄i) − ui(x̄

′
i).

Thus ui(x̂i)− ui(x̂′i) = ui(x̄i)− ui(x̄′i).

The next lemma will be a key part in establishing a measure of a situation.

Lemma 21. For any (i, ci, xi) ∈ Y o and j ∈ {1, 2, 3} \ {i}, there exist unique

(i) {ym}Mm=0 an M-partition of [xi, ci], and

(ii) ` ∈ [xj(0), xj(1))

such that (i, ym, ym−1) ∼ (j, xj(1), xj(0)) for every m ∈ {2, . . . ,M}, and (i, y1, y0) ∼
(j, xj(1), `).

Proof. Fix (i, ci, xi) ∈ Y o and j ∈ {1, 2, 3} \ {i}. Define the sequence {ŷm} re-
cursively: Set ŷ0 = ci. If (i, ŷm−1, xi) � (j, xj(1), xj(0)), then by Lemma 7 there
exists a unique ȳ ∈ (xi, ŷ

m−1) such that (i, ŷm−1, ȳ) ∼ (j, xj(1), xj(0)). (Note that
ȳ 6= ŷm−1 since x1(1) 6= x1(0).) Set ŷm = ȳ so that (i, ŷm−1, ŷm) ∼ (j, xj(1), xj(0)).
If (j, xj(1), xj(0)) % (i, ŷm−1, xi), then set ŷm = xi and M = m. The following claim
shows that this case will happen for finite m.

Claim: There exists m such that (j, xj(1), xj(0)) % (i, ŷm−1, xi). By way of con-
tradiction, suppose not, i.e. (i, ŷm, xi) � (j, xj(1), xj(0)) for all m ∈ N. Since {ŷm}N
is a strictly decreasing sequence with a lower bound xi, it converges. Let ŷm → ỹ ≥
xi. Consider the sequence of problems {({i, j}, (ŷm−1, xj(1)), ŷm + xj(0))}N. Since
(i, ŷm−1, ŷm) ∼ (j, xj(1), xj(0)) for everym ∈ N, this means S({i, j}, (ŷm−1, xj(1)), ŷm+
xj(0)) = (ŷm, xj(0)) for every m ∈ N. Thus

S({i, j}, (ŷm−1, xj(1)), ŷm + xj(0))→ (ỹ, xj(0)).

However Continuity implies

S({i, j}, (ŷm−1, xj(1)), ŷm + xj(0))→ S({i, j}, (ỹ, xj(1)), ỹ + xj(0)).

Thus S({i, j}, (ỹ, xj(1)), ỹ + xj(0)) = (ỹ, xj(0)). But since xj(1) > xj(0) > 0 and
ỹ ≥ xi > 0, this would violate LCSM-Resource. This proves the claim.

To determine `, there are two sub-cases to consider: If (j, xj(1), xj(0)) ∼ (i, ŷM−1, xi),
then set ` = xj(0). If (j, xj(1), xj(0)) � (i, ŷM−1, xi), then by Lemma 7 there exists a
unique ` ∈ (xj(0), xj(1)) such that (j, xj(1), `) ∼ (i, ŷM−1, xi). (Note that ` 6= xj(1)
since ŷM−1 6= xi.)

For every m ∈ {0, 1, 2, . . . ,M}, set ym = ŷM−m. Then {ym}Mm=0 and ` satisfy the
desired requirements.

20



For any (i, ci, xi) ∈ Y o and j ∈ {1, 2, 3} \ {i}, let Mj(i, ci, xi) denote the M and
`j(i, ci, xi) denote the ` from Lemma 21. The next lemma shows that the choice of j
is without loss of generality.

Lemma 22. For any (i, ci, xi) ∈ Y o and j, k ∈ {1, 2, 3} \ {i}, we have Mj(i, ci, xi) =
Mk(i, ci, xi) and uj(`j(i, ci, xi)) = uk(`k(i, ci, xi)).

Proof. Abusing notation, let Mj = Mj(i, ci, xi), Mk = Mk(i, ci, xi), `j = `j(i, ci, xi),

and `k = `k(i, ci, xi). Let {ymj }
Mj

m=0 and {ymk }
Mk
m=0 be the respective partitions of [xi, ci]

from Lemma 21. Since (j, xj(1), xj(0)) ∼ (k, xk(1), xk(0)), Lemma 11 implies that we
must have Mj = Mk and ymj = ymk for all m.

Simplifying notation, let {ym}Mm=0 denote the partition of [xi, ci] now. Since
(i, y1, y0) ∼ (j, xj(1), `j) and (i, y1, y0) ∼ (k, xk(1), `k), Lemma 21 implies (j, xj(1), `j) ∼
(k, xk(1), `k). Lemma 19 then implies uj(xj(1)) − uj(`j) = uk(xk(1)) − uk(`k). But
uj(xj(1)) = uk(xk(1)) = 1. Hence uj(`j) = uk(`k).

Our measure of a situation (i, ci, xi) is given by Mj(i, ci, xi)−uj(`j(i, ci, xi)), where
j ∈ {1, 2, 3} \ {i}. The previous lemma shows this measure is independent of j. The
final lemma of this subsection shows that this measure is additive.

Lemma 23. Suppose i ∈ N and c > b > a > 0. Then for any j ∈ {1, 2, 3} \ {i}, we
have

Mj(i, c, b)− uj(`j(i, c, b)) +Mj(i, b, a)− uj(`j(i, b, a)) = Mj(i, c, a)− uj(`j(i, c, a)).

Proof. To simplify the proof, we will assume 1 = Mj(i, c, b) = Mj(i, b, a). Generaliz-
ing the proof is a straightforward but tedious exercise.

Set `′ = `j(i, c, b) and `′′ = `j(i, b, a). Thus we have (i, c, b) ∼ (j, xj(1), `′) and
(i, b, a) ∼ (j, xj(1), `′′).

Case 1: (j, xj(1), xj(0)) % (i, c, a). If (j, xj(1), xj(0)) ∼ (i, c, a), then set ˆ̀ =
xj(0). Otherwise, if (j, xj(1), xj(0)) � (i, c, a), then by Lemma 7 there exists a

unique ˆ̀ ∈ (xj(0), xj(1)) satisfying (j, xj(1), ˆ̀) ∼ (i, c, a). Thus Mj(i, c, a) = 1

and `j(i, c, a) = ˆ̀. Also, since (i, c, b) ∼ (j, xj(1), `′), Composition Down implies

(i, b, a) ∼ (j, `′, ˆ̀). Since (i, b, a) ∼ (j, xj(1), `′′) by assumption, we have

(j, xj(1), `′′) ∼ (i, b, a) ∼ (j, `′, ˆ̀).

Lemma 20 then implies uj(xj(1))− uj(`′′) = uj(`
′)− uj(ˆ̀), or

uj(ˆ̀) = uj(`
′′) + uj(`

′)− 1.

Thus we have:

Mj(i, c, a)− uj(`j(i, c, a)) = 1− uj(ˆ̀)

= 2− uj(`′)− uj(`′′)
= [1− uj(`′)] + [1− uj(`′′)]
= [Mj(i, c, b)− uj(`j(i, c, b))] + [Mj(i, b, a)− uj(`j(i, b, a))] .
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Case 2: (i, c, a) � (j, xj(1), xj(0)). By Lemma 7, there exists a unique y ∈ (a, c)
such that (i, c, y) ∼ (j, xj(1), xj(0)). (Note that y < c since xj(1) > xj(0).) In fact, it
must be that y ≤ b since Mj(i, c, b) = 1.

Case 2(a): y = b. Then we must have `′ = xj(0) which implies uj(`
′) = 0. Thus

Mj(i, c, b)− uj(`j(i, c, b)) +Mj(i, b, a)− uj(`j(i, b, a)) = 2− uj(`′′).

Also, `′ = xj(0) implies (i, c, b) ∼ (j, xj(1), xj(0)). But since (i, b, a) ∼ (j, xj(1), `′′),
this implies Mj(i, c, a) = 2 and `j(i, c, a) = `′′. Thus

Mj(i, c, a)− uj(`j(i, c, a)) = 2− u(`′′)

as desired.
Case 2(b): y < b. Then we must have `′ > xj(0). Since (i, c, y) ∼ (j, xj(1), xj(0))

and (i, c, b) ∼ (j, xj(1), `′), Composition Down implies (i, b, y) ∼ (j, `′, xj(0)). Since
(j, xj(1), `′′) ∼ (i, b, a) and y > a, item (i) of Lemma 9 implies there exists a unique
ˆ̀∈ (`′′, xj(1)) such that (j, xj(1), ˆ̀) ∼ (i, b, y). Thus we have

(j, xj(1), ˆ̀) ∼ (i, b, y) ∼ (j, `′, xj(0)).

Lemma 20 then implies uj(xj(1))− uj(ˆ̀) = uj(`
′)− uj(xj(0)), or

1− uj(ˆ̀) = uj(`
′). (4)

Furthermore, since (j, xj(1), `′′) ∼ (i, b, a) and (j, xj(1), ˆ̀) ∼ (i, b, y), Composition

Down implies (j, ˆ̀, `′′) ∼ (i, y, a). Since (j, xj(1), `′′) ∼ (i, b, a) and y < b, item (ii) of

Lemma 9 implies there exists a unique ˆ̀′ ∈ (`′′, xj(1)) such that (j, xj(1), ˆ̀′) ∼ (i, y, a).
Thus we have

(j, xj(1), ˆ̀′) ∼ (i, y, a) ∼ (j, ˆ̀, `′′).

Lemma 20 then implies uj(xj(1))− uj(ˆ̀′) = uj(ˆ̀)− uj(`′′), or

1− uj(ˆ̀′) = uj(ˆ̀)− uj(`′′). (5)

To summarize, we have (i, c, y) ∼ (j, xj(1), xj(0)), (i, y, a) ∼ (j, xj(1), ˆ̀′). Thus

Mj(i, c, a) = 2 and `j(i, c, a) = ˆ̀′. Using this, (4), and (5), we get:

Mj(i, c, a)− uj(`j(i, c, a)) = 2− uj(ˆ̀′)

= 2− uj(`′)− uj(`′′)
= [1− uj(`′)] + [1− uj(`′′)]
= [Mj(i, c, b)− uj(`(i, c, b))] + [Mj(i, b, a)− uj(`(i, b, a))] .
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B.3 Defining Utilities and Finishing the Proof

For any i ∈ N and x > 0, define

Ui(x) =


Mj(i, x, 1)− uj (`j(i, x, 1)) if x > 1

0 if x = 1

uj (`j(i, 1, x))−Mj(i, 1, x) if x < 1,

where j ∈ {1, 2, 3} \ {i}. Lemma 22 implies that Ui is independent of j. Lemma 23
implies the following lemma.

Lemma 24. For any i ∈ N, x > x′ > 0, and j ∈ {1, 2, 3} \ {i}, we have Ui(x) −
Ui(x

′) = Mj(i, x, x
′)− uj(`j(i, x, x′)).

The final four lemmas establish that {Ui}i∈N satisfies all the conditions to be an
equal sacrifice representation of S.

Lemma 25. Suppose (i, ci, xi), (j, cj, xj) ∈ Y and i 6= j. If (i, ci, xi) ∼ (j, cj, xj), then
Ui(ci)− Ui(xi) = Uj(cj)− Uj(xj).

Proof. LCSM-Resource implies ci = xi if and only if cj = xj. But in that case we
would have Ui(ci)− Ui(xi) = Uj(cj)− Uj(xj) = 0.

Now suppose ci > xi and cj > xj. Choose k ∈ {1, 2, 3} \ {i, j}. Set M̂ =

Mk(i, ci, xi) and ˆ̀ = `k(i, ci, xi). Let {ym}M̂m=0 be the M̂ -partition of [xi, ci] such
that (i, ym, ym−1) ∼ (k, xk(1), xk(0)) for every m ∈ {2, . . . , M̂}, and (i, y1, y0) ∼
(k, xk(1), ˆ̀). Define z0 = xj and zM̂ = cj. For m ∈ {1, 2, . . . M̂ − 1}, define zm to be
the unique award for j satisfying (j, cj, z

m) ∼ (i, ci, y
m). (Item (i) of Lemma 9 shows

{zm}M̂m=0 is strictly increasing and unique since (j, cj, xj) ∼ (i, ci, xi) and {ym}M̂m=0

is strictly increasing.) Composition Down implies (j, zm, zm−1) ∼ (i, ym, ym−1) for
every m ∈ {1, 2, . . . ,M}. Lemma 11 then implies (j, zm, zm−1) ∼ (k, xk(1), xk(0))
for every m ∈ {2, 3, . . . ,M}, and (j, z1, z0) ∼ (k, xk(1), ˆ̀). Hence M(j, cj, xj) = M̂

and `(j, cj, xj) = ˆ̀. Lemma 24 then implies Ui(ci) − Ui(xi) = M̂ − uk(ˆ̀) = Uj(cj) −
Uj(xj).

Lemma 26. Suppose x = S(N, c, E). Then for every i, j ∈ N such that xi, xj > 0,
we have Ui(ci)− Ui(xi) = Uj(cj)− Uj(xj).

Proof. This is follows directly from Lemma 6 and Lemma 25.

Lemma 27. For every i ∈ N, the function Ui is strictly increasing.

Proof. By Lemma 24, Ui is strictly increasing if Mj(i, x, x
′) − uj(`j(i, x, x

′)) > 0
when x > x′ > 0 and j ∈ {1, 2, 3} \ {i}. Note that `j(i, x, x

′) < xj(1), which
implies uj(`j(i, x, x

′)) < 1. Also Mj(i, x, x
′) ≥ 1. Hence we must have Mj(i, x, x

′) −
uj(`j(i, x, x

′)) > 0.

Lemma 28. For every i ∈ N, the function Ui is continuous.

Proof. This follows easily from Continuity and Lemma 26.

Thus Ui is continuous and strictly increasing, and {Ui}i∈N is an equal sacrifice
representation of S.
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C Proofs for Theorem 2 and Theorem 3

Proof of Theorem 2. Fix b > a > 0. Since Ui is strictly increasing for every i, we
have Ui(a) < Ui(b) for every i. Without loss of generality, assume U1(b) − U1(a) ≤
U2(b)− U2(a). (The proof is easily adapted if U1(b)− U1(a) ≥ U2(b)− U2(a).)

Define

Ûi(x) ≡ Ui(x)− Ui(a)

U1(b)− U1(a)
.

and

V̂i(x) ≡ Vi(x)− Vi(a)

V1(b)− V1(a)

It is easy to verify that both Û and V̂ are equal sacrifice representations of S. Thus
V̂i and Ûi are continuous and strictly increasing for every i. Also note that Ûi(a) = 0
for every i, V̂i(a) = 0 for every i, and Û1(b) = V̂1(b) = 1. Also, the above assumption
that U1(b)− U1(a) ≤ U2(b)− U2(a) implies Û1(b) = 1 ≤ Û2(b).

We will show that Û = V̂ . Once that is established, the proof is completed by
setting

α =
V1(b)− V1(a)

U1(b)− U1(a)

and for every i ∈ N
βi = Vi(a)− αUi(a).

Step 1. Û1 = V̂1.
By the Intermediate Value Theorem and strict monotonicity of Û , there exists

c1 ∈ (a, b) such that Û1(c1) = 1
2
. Similarly since Û2(b) ≥ 1, there exists c2 ∈ (a, b)

such that Û2(c2) = 1
2
. Since Û is an equal sacrifice representation of S, we must have

S({1, 2}, (c1, c2), 2a) = (a, a) and S({1, 2}, (b, c2), c1 +a) = (c1, a). But since V̂ is also
an equal sacrifice representation of S, this means that

V̂1(c1)− V̂1(a) = V̂2(c2)− V̂2(a) = V̂1(b)− V̂1(c1)

But since V̂1(a) = 0 and V̂1(b) = 1, this implies V̂1(c1) = 1
2

= Û1(c1).
By way of induction, fix n ∈ N and suppose for every m ∈ [0, 2n] ∩N there exists

cm ∈ [a, b] such that Û1(cm) = V̂1(cm) = m
2n

. Now let m ∈ [0, 2n+1] ∩ N. If m is
even or zero, then m = 2m′ for some m′ ∈ [0, 2n] ∩ N. Hence by the inductive step
there exists cm′ ∈ [a, b] such that Û1(cm′) = V̂1(cm′) = m′

2n
= m

2n+1 . If m is odd and
non-zero, then m − 1 and m + 1 are even. Hence by the inductive step, there exists
cm−1, cm+1 ∈ [a, b] such that Û1(cm−1) = V̂1(cm−1) = m−1

2n+1 and Û1(cm+1) = V̂1(cm+1) =
m+1
2n+1 . By the Intermediate Value Theorem and strict monotonicity of Û , there exists

cm ∈ (cm−1, cm+1) ⊂ [1, 2] such that Û1(cm) = m
2n+1 . Similar to above, since Û and V̂

are both equal sacrifice representations of S, we must have Û1(cm) = V̂1(cm).
Since {m

2n
: n ∈ N,m ∈ [0, 2n] ∩ N} is dense in [0, 1] and since Û1 and V̂1 are

continuous and strictly increasing, we must have Û1 = V̂1 on [a, b].
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Extending the result to all of R++ is straightforward since a and b were arbitrar-
ily chosen. Finally we must have Û1(0) = V̂1(0) since they agree on R++ and are
continuous.

Step 2. Ûi = V̂i for all i.
By way of contradiction, suppose not. I.e. suppose there exists i 6= 1 and x

such that Ûi(x) 6= V̂i(x). Since Û and V̂ are both continuous, there exists y and
ε > 0 such that Ûi(y) = V̂i(y) and Ûi(z) 6= V̂i(z) for every z ∈ (y, y + ε). Since Ûi is
continuous and strictly increasing, there exists z ∈ (y, y + ε) such that 0 < Ûi(z) −
Ûi(y) ≤ 1. The Intermediate Value Theorem implies there exists c1 ∈ [a, b] such that
Û1(c1) = Ûi(z)−Ûi(y). Since Û is an equal sacrifice representation of S, we must have
S({1, i}, (c1, z), a+y) = (a, y). However note that V̂i(z)− V̂i(y) 6= Ûi(z)− V̂i(y). Since
V̂ is also an equal sacrifice representation of S, then S({1, i}, (c1, z), a + y) 6= (a, y)
must hold, which is a contradiction.

Proof of Theorem 3. Showing that the axioms are necessary is a straightforward ex-
ercise. So suppose S satisfies the stated axioms. By Theorem 1, we have S ∈ ES.
Let U ∈ U be the equal sacrifice representation of S. To show S ∈ ES∗, Theorem 2
implies that it is sufficient to show that Ui − Uj is constant for all i and j. But if
i and j were such that Ui − Uj was not constant, then one could easily construct a
problem that violated Symmetry.

D Proof of Theorem 4

First we state a standard result for concave functions.

Lemma 29. A function f : A → R is concave if and only if f(a + h) − f(a) ≥
f(b+ h)− f(b) for a < b and h > 0.

The following lemma will be used in the proof.

Lemma 30. Let f : A→ R be continuous. Suppose there exists a < b and α ∈ (0, 1)
such that (1− α)f(a) + αf(b) > f((1− α)a + αb). Then there exists x ∈ (a, b) such
that for every ε satisfying 0 < ε < min{x − a, b − x}, we have f(x) − f(x − ε) <
f(x+ ε)− f(x).

Proof. Define the function g : [0, 1]→ R to be

g(β) ≡ f((1− β)a+ βb)− [(1− β)f(a) + βf(b)] .

Note that g(0) = g(1) = 0, g(α) < 0, and g is continuous. By the Extreme Value
Theorem, g attains a global minimum on [0, 1]. Define

γ ≡ min{β ∈ [0, 1] : g(β) ≤ g(β′) for all β′ ∈ [0, 1]}.

Note that γ ∈ (0, 1) since g(α) < 0 = g(0) = g(1) and α ∈ (0, 1).
Set

x ≡ (1− γ)a+ γb.
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Note that x ∈ (a, b). Now choose ε satisfying 0 < ε < min{x − a, b − x}. Set
β′ ≡ x−ε−a

b−a = γ− ε
b−a and β′′ ≡ x+ε−a

b−a = γ+ ε
b−a . Note then that 0 < β′ < γ < β′′ < 1.

Since γ is a global minimum of g, we have g(β′) > g(γ) and g(β′′) ≥ g(γ). The first
inequality implies

f(x− ε)− [(1− β′)f(a) + β′f(b)] > f(x)− [(1− γ)f(a) + γf(b)]

(γ − β′) [f(b)− f(a)] > f(x)− f(x− ε),

while the second inequality implies

f(x+ ε)− [(1− β′′)f(a) + β′′f(b)] ≥ f(x)− [(1− γ)f(a) + γf(b)]

f(x+ ε)− f(x) ≥ (β′′ − γ) [f(b)− f(a)] .

But since γ − β′ = ε
b−a = β′′ − γ, this implies

f(x+ ε)− f(x) ≥ ε

b− a
[f(b)− f(a)] > f(x)− f(x− ε),

as desired.

Now we turn to the proof of Theorem 4.

Proof of Theorem 4. (⇐) By assumption, S is an equal sacrifice rule with represen-
tation U , where Ui is concave for every i.

Fix the problem (N, c, E), i ∈ N , and h > 0. Set x ≡ S(N, c, E) and x′ ≡
S(N, (ci + h, c−i), E + h). By way of contradiction, suppose h < x′i − xi. Since
xi + h < x′i, this implies that there exists j ∈ N \ {i} such that x′j < xj. Consistency
implies (xi, xj) = S({i, j}, (ci, cj), xi + xj) and (x′i, x

′
j) = S({i, j}, (ci +h, cj), x

′
i + x′j).

Since x′i > 0, xj > 0, and U is an equal sacrifice representation of S, we must have

Ui(ci + h)− Ui(x′i) ≥ Uj(cj)− Uj(x′j)

and
Uj(cj)− Uj(xj) ≥ Ui(ci)− Ui(xi).

Also, since Ui is concave and h > 0, Lemma 29 implies

Ui(ci)− Ui(xi) ≥ Ui(ci + h)− Ui(xi + h).

Finally, since Ui is strictly increasing, we have

Ui(ci + h)− Ui(xi + h) > Ui(ci + h)− Ui(x′i).

Putting this all together, we have

Uj(cj)− Uj(xj) > Uj(cj)− Uj(x′j).

But this implies Uj(xj) < Uj(x
′
j), or xj < x′j since Uj is strictly increasing. This

contradicts x′j < xj.
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(⇒) By assumption, S satisfies Linked Claims-Resource Monotonicity and is an
equal sacrifice rule with representation U . By way of contradiction, suppose there
exists i such that Ui is not concave. I.e. there exists b > a > 0 and α ∈ (0, 1)
such that (1 − α)Ui(a) + αUi(b) > Ui((1 − α)a + αb). By Lemma 30, there exists
ci ∈ (a, b) such that for every δ satisfying 0 < δ < min{ci − a, b − ci}, we have
Ui(ci)− Ui(ci − δ) < Ui(ci + δ)− Ui(ci). Choose h′ < min{ci − a, b− ci}.

Fix j 6= i and cj > 0. Choose ε < min{Ui(ci)−Ui(ci− h′), lima→0 Uj(cj)−Uj(a)}.
Since Ui and Uj are continuous and strictly increasing, there exists xi ∈ (0, ci) and
xj ∈ (0, cj) such that Uj(cj) − Uj(xj) = Ui(ci) − Ui(xi) = ε. Note that this implies
S({i, j}, (ci, cj), xi + xj) = (xi, xj). Set h ≡ ci − xi. Thus we have xi = ci − h and
xi, ci + h ∈ (a, b). By Lemma 30, Ui(ci)− Ui(xi) < Ui(ci + h)− Ui(ci). But then this
implies Ui(ci + h) − Ui(ci) > Uj(cj) − Uj(xj). Since Ui and Uj are both continuous
and strictly increasing, this means that Si({i, j}, (ci + h, cj), ci + xj) > ci = xi + h.
But this implies Si({i, j}, (ci + h, cj), ci + xj) − Si({i, j}, (ci, cj), xi + xj) > h, which
violates Linked Claims-Resource Monotonicity.
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Kıbrıs, Özgür (2012), “A revealed preference analysis of solutions to simple allocation
problems.” Theory and Decision, 72, 509–523.
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