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To Dissimulate or Not to Dissimulate?

Insider Trading When Anticipating Future Information

Abstract

We analyze a dynamic model of a monopolistic insider who receives private information

sequentially and faces a post-trading disclosure requirement. We show that characterizing

the equilibrium in this trading game is isomorphic to solving a consumption-saving problem

with a borrowing constraint. Analogous to the “consumption-smoothing” intuition in the

consumption-saving literature, the insider in our trading game “smooths” his information

usage over time given the dynamics of his private information. The insider would “dissim-

ulate” his private information through mixed strategies if and only if sufficient information

arrives early. Finally, we analyze the interpretation of mixed strategies and the value of

commitment.
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1. Introduction

How insiders trade in financial markets and affect prices is a central question in economics.

Motivated by the post-trade disclosure requirement on insiders, Huddart et al. (2001) (HHL

(2001) henceforth) extend the model in Kyle (1985) so that the insider needs to disclose his

trade after each transaction. Disclosure changes the nature of information revelation in the

market since the insider’s trading can no longer “hide” behind noise trading. The key insight

in HHL (2001) is that the insider “dissimulates” his private information by adopting a mixed

strategy in early rounds so he can exploit the information in later rounds. In equilibrium,

the insider utilizes his information at a constant rate in the sense that the same amount of

private information is revealed each period.

The literature so far has abstracted away from the fact that an insider typically obtains

information on an ongoing basis. How does this feature affect the insider’s trading strategy

and asset prices? For example, how does the anticipation of future information affect the

insider’s trading strategy today? As noted in the literature, an insider can dissimulate his

current long-lived information to use in the future. That is, one can “transfer” his current

information to future periods. However, one cannot transfer his future information to utilize

today. Thus, the technology for transferring information across time is “asymmetrical.” How

does this asymmetry affect the insider’s trading strategy and asset prices? Our paper tries

to answer these questions.

Our model is an extension of Kyle (1985) and HHL (2001). Specifically, we consider

an N -period model with one risky asset and one monopolistic insider. The risky asset is a

claim to an uncertain cash flow in period N . Each period the insider is endowed with some

long-lived private information, which is a private signal about the risky asset’s liquidation

value in period N . The insider trades against noise traders and a risk-neutral market maker

sets the price. As in HHL (2001), the insider faces a post-trade disclosure requirement, that
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is, he needs to disclose his trade after his transaction each period.1

In each period, the insider decides on how aggressively he should exploit his current

information while taking into account two features. First, as in HHL (2001), the post-

trade disclosure would completely reveal his current information unless he dissimulates his

information by adopting a mixed strategy. Second, he expects to receive further private

information in future periods. The anticipation of the amount of future private information

naturally affects the insider’s trading today.

Our paper has three main contributions. First, we provide a methodology to compute

the linear equilibrium in the dynamic trading game by showing that solving the linear

equilibrium—which is a general equilibrium concept that involves the interactions between

the insider and the market maker—is isomorphic to computing a standard consumption-

saving problem with a borrowing constraint—which is a simple partial equilibrium concept.

Specifically, we reduce the equilibrium characterization to solving the insider’s optimal

information usage problem. We show that this information usage problem can be mapped

to a consumption-saving problem of an agent with a power utility. Each period, the insider’s

private signal and his information usage in our original model corresponds to the agent’s in-

come and consumption, respectively. The aforementioned asymmetry in information transfer

technology corresponds to the agent’s technology in transferring consumption over time: the

agent can transfer his current consumption to future periods but the not the other away

around. That is, the interest rate is zero and the agent can save but not borrow.

Equipped with this mapping, we can figure out the linear equilibrium in our trading

game using the standard dynamic programming approach, with a state variable being the

amount of unused information by the insider till period n. In particular, the value of this

state variable governs whether the insider dissimulates or not in equilibrium: he plays a

mixed strategy in period n if and only if the state variable is positive.

1See, for example, Section 16(a) and 13(d) requirements of Securities Exchange Act of 1934 and amend-

ment by Sarbanes-Oxley Act of 2002.

2



Our second contribution is that, inspired by the “consumption-smoothing” intuition in a

consumption-saving problem, we show that the investor’s optimal trading strategy minimizes

the variation of his information usage over time. That is, the traditional consumption-

smoothing result corresponds to the “information-usage-smoothing” result in our model. We

also show that smoothing information usage allows the insider to smooth his price impact

over time. Ideally, the insider would like to “walk down the demand curve” and have the same

price impact each period, which is equivalent to utilizing the same amount of information

each period. However, this is not always possible because of the asymmetry reflected in the

insider’s information budget constraint. As noted earlier, the insider can transfer his current

information to future periods but not the other way around. Hence, if most of the private

information arrives in early periods, the insider can perfectly smooth his information over

time, i.e., utilize the same amount of information each period, implying that the insider

does not fully use up his private information by playing a mixed strategy in early periods.

However, if most information arrives in late periods, it is infeasible for the insider to have a

constant information usage rate each period because he cannot transfer information in late

periods to early ones. Instead, the insider has to use up his information endowment and

play a pure strategy in early periods.

These results extends and sharpens the insight in HHL (2001), who focus on the special

case in which the insider possesses all his private information in the first period and hence

achieves perfect information smoothing through mixed strategies. In contrast, if the insider

expects to receive a large amount of private information in the future, he would exploit his

current information more aggressively. In fact, if future information is sufficiently abundant,

he would adopt a pure strategy, which would fully reveal his current information after dis-

closure. This result is consistent with the evidence in Koudijs (2015), who studies insider

trading in the 18th century in Amsterdam where private information arrives from London

via sailing boats and finds that an informed investor would trade aggressively if he expects

the next boat to arrive shortly.
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Finally, to interpret the insider’s mixed strategy, we consider an alternative setup whereby

the insider commits to a strategy of adding noise to his demand and consciously chooses the

variance of the noise optimally. The committed strategy can be viewed as a predetermined

trading plan implemented by an algorithm. The rest of the setup remains identical to our

baseline model. We find that the equilibrium in this variation model with commitment is

identical to that in our baseline model. That is, the implications on whether to dissimulate

and how much noise to add to demand are the same across the two models. Hence, the mixed

strategy in our model can be viewed as the insider actively choosing how much information

to dissimulate each period.

Our paper adds to the literature on informed trading by corporate insiders and institu-

tional investors in financial markets. This literature is voluminous and so we discuss most

related studies, organized according to the two important features in our setting: the in-

sider’s trade must be disclosed after the fact and so he might play a mixed strategy; and

the insider acquires information sequentially. In terms of the first feature, our paper is most

related to HHL (2001), who is the first study to constructively demonstrate that, in a Kyle

(1985) model, the insider can play a mixed strategy when his trade is mandated to be dis-

closed. Yang and Zhu (2020) investigate the behavior of an insider who leaks a signal about

the demand to back-runners. The insider can choose between the pure and mixed strategies,

and is more likely to choose the latter if the information leakage is more severe. Back and

Baruch (2004) present in a variant of Glosten and Milgrom (1985) model that an insider

would take mixed strategy by randomizing over trades to buy, sell, and wait, and they show

its convergence to the Kyle-style equilibrium insider strategy. Our paper complements these

studies in several ways. First, methodology wise, we transform the equilirbium characteriza-

tion into a simple consumption-saving problem. Second, we extend and sharpen the results

in HHL (2001) and characterize when the insider dissimulates in equilibrium. Third, we

provide an interpretation of the mixed strategy played in a Kyle (1985) model and also show

that commitment has no value in the linear equilibrium.
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In terms of the second feature of sequential information arrival, we believe that this

feature is relevant to many settings in practice. The information acquisition process may

result from the dynamics of informational events—such as IPO (e.g., Welch, 1992; Lowry and

Schwert, 2002), acquisition (e.g., Denis and Macias, 2013), and mergers (e.g. Ferreira and

Laux, 2007)—or/and the dynamics of research and learning generating private information

flow (e.g. Banerjee and Breon-Drish, 2022; Johannes et al., 2014). Bernhardt and Miao

(2004), Caldentey and Stacchetti (2010) and Sastry and Thompson (2019) examine the

impacts of sequential information acquisition. The public disclosure requirement and the

associated mixed strategy equilibrium features distinguish our study from theirs.

2. Model

Our model setup is parallel to that in HHL (2001). The only difference is the assumption

on the insider’s information. In HHL (2001), the insider obtains all his private information

about the asset’s liquidation value at the initial period and receives no further private in-

formation afterwards. In contrast, our analysis focuses on the sequential arrival of private

information.

The economy has one risky asset and lasts for N periods, denoted by n = 1, ..., N . The

risky asset has a liquidation value at the final period N , which is denoted as F and has

an ex ante distribution of N (0, σ2
F ) with σF > 0. The market is populated by an insider,

a continuum of noise traders, and a market maker. Everyone is risk neutral. The insider

submits a market order to trade xn shares in period n. The market maker sets the asset

price to break even. The time line of events in period n is summarized in Figure 1.

The insider observes private information about the asset’s liquidation value and, critical

to our analysis, his information arrives over time. To capture this sequential learning feature,
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n−

The insider

observes Fn.

n

• An insider and noise traders sub-

mit xn and un respectively;

• Market maker observes yn =

xn + un, sets price as Pn, and fills

all demands.

n+

• The insider announces pub-

licly xn and market maker up-

dates the price to P ∗
n ;

• If n = N , F is announced.

time

Figure 1. Timeline

we divide the asset’s liquidation value F into N elements as follows:

F =
N∑

n=1

Fn

where Fn ∼ N (0, σ2
Fn
) with σFn ≥ 0 and is serially independent across n. By construction,

σ2
F =

N∑
n=1

σ2
Fn
. Prior to each trading time n = 1, ..., N (denoted by n− in Figure 1), the

insider observes Fn. Note that Fn is long-lived information in the sense that it affects the

asset’s final liquidation value and never becomes public before the final period. If σ2
F1

= σ2
F

and σ2
Fn

= 0 for n > 1, then our setting degenerates to HHL as the insider receives all his

private information in the first period.

Noise traders have an aggregate demand of un shares, with un ∼ N (0, σ2
u) (with σu > 0)

and un is independent across n and from Fn. As standard in the literature, noise trading

provides the randomness to hide the insider’s trade from the market maker. Upon receiving

the aggregate order flow from the insider and noise traders, yn = xn + un, the market maker

sets the price Pn to his expectation of the liquidation value to execute the trade (the trading

time is denoted by n in Figure 1). As in HHL, the insider is required to disclose his trading

ex post. That is, after the transaction at period n but before the next trading period n+ 1

(denoted by n+ in Figure 1), the insider publicly announces his trade size xn, and based on

this announcement, the market maker adjusts her break-even price from Pn to P ∗
n .

Formally, in period n, the market maker’s information set is IM
n ≡ {y1, ..., yn, x1, ..., xn−1}
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at the time of trading and is IM
n+ ≡ {y1, ..., yn, x1, ..., xn} after the insider’s disclosure of his

trade xn. At the time of transaction, the market maker sets the execution price to

Pn = E[F |IM
n ]. (1)

After the insider’s disclosure, the market maker adjusts the asset price to

P ∗
n = E[F |IM

n+]. (2)

When computing prices Pn and P ∗
n in equations (1) and (2), the market maker takes as given

the insider’s trading strategies.

The insider’s information set in period n is II
n ≡ {F1, ..., Fn, P1, ..., Pn−1, P

∗
1 , ..., P

∗
n−1}.

The insider maximize his expected trading profits:

max
xn,...,xN

E

[
N∑

j=n

πj|II
n

]
, (3)

where πj ≡ xj(F − Pj) is his trading profit directly attributable to his period j trade. In

computing his optimal trade in (3), the insider takes the market maker’s pricing rules as

given. Following Kyle (1985), we define an equilibrium as follows:

Definition 1. An equilibrium is defined as trading strategies and pricing rules (xn, Pn, P
∗
n),

for n = 1, ..., N , such that at period n: (a) the market maker sets prices according to (1) and

(2), taking the insider’s trading strategies as given; and (b) the insider’s strategy {xn,...xN}

solves (3), taking the market maker’s pricing rules as given.

3. Analysis

In this section, we first characterize the equilibrium in our setting and show that comput-

ing the equilibrium in our trading game (which is a general equilibrium concept) is equivalent

to solving a standard borrowing constrained consumption-saving problem (which is a partial

equilibrium concept). We then present a recursive formulation of the insider’s problem and

characterize when the insider plays a pure or mixed strategy in equilibrium.
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3.1 Equilibrium Characterization: An Equivalence Result

We follow Kyle (1985) and HHL (2001) and consider linear equilibria. That is, in period

n, for n = 1, ..., N , the trading strategies and the pricing rules are given by

xn = βn(
n∑

i=1

Fi − P ∗
n−1) + zn, (4)

Pn = P ∗
n−1 + λnyn, (5)

P ∗
n = P ∗

n−1 + γnxn, (6)

where zn ∼ N (0, σ2
zn), P

∗
0 = 0, and the parameters {βn, λn, γn, σzn} are determined in

equilibrium.

Intuitively, the insider observes private information Fn in period n and hence
n∑

i=1

Fi−P ∗
n−1

is the difference between the insider’s expected liquidation value computed based on his

private information and the asset price determined based on the public information. So,

this difference captures the insider’s information advantage relative to the market and his

trade is linear in this difference in (4). Moreover, as pointed out in HHL (2001), due to the

disclosure requirement, the insider may play a mixed strategy, i.e., add noise to his trade to

dissimulate his private information. Mathematically, in period n, the insider adopts a mixed

strategy if σzn > 0 and a pure strategy if σzn = 0. The pricing function in (5) reflects that

the market maker adjusts the execution price in period n based on the aggregate order flow

yn. After the insider’s disclosure, as shown in (6), the market maker further adjusts the asset

price based on the insider’s trade xn.

The following theorem characterizes the unique linear equilibrium. As a methodological

contribution, this theorem also demonstrates that solving a linear equilibrium in our economy

is equivalent to solving a standard borrowing-constrained consumption-saving problem.

Theorem 1. There exists a unique linear equilibrium in which the insider’s trading strate-

gies and the market maker’s pricing rules are given by equations (4)–(6) with parameters
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characterized as follows: For n = 1, ..., N ,

βn =
knσu

Σn + k2
n

, (7)

λn =
kn
2σu

, (8)

γn =
kn
σu

, (9)

σ2
zn =

Σn

Σn + k2
n

σ2
u, (10)

where

Σn =
n∑

i=1

σ2
Fi
−

n∑
i=1

k2
i , (11)

and {k1, · · · , kN} ∈ RN
≥0 are the unique non-negative solution to the following maximization

problem:

max
{k1,··· ,kN}∈RN

≥0

(k1 + ...+ kN), (12)

subject to
n∑

i=1

k2
i ≤

n∑
i=1

σ2
Fi
, for n = 1, ..., N. (13)

The above theorem shows that all equilibrium parameter values are pinned down by equa-

tions (7)–(11) once the value of kn is determined. The values of {k1, · · · , kN} are computed

further from the constrained maximization problem described in (12) and (13).

In this constrained maximization problem, the choice variable k2
n represents how much

information the insider utilizes in each period. In the proof of Theorem 1, we show that

variable k2
n is the variance of the asset price change in period n:

k2
n = V ar(P ∗

n − P ∗
n−1). (14)

Empirically, kn corresponds to return volatility. Nonetheless, in our analysis, we emphasize

more its interpretation from an information perspective. Recall that the risk-neutral market
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maker sets the price P ∗
n as the expected asset liquidation value based on aggregate order

flows and insider trading disclosure. So, the price process is a martingale and price changes

are independent over time. The variance of these changes is driven by the new information

revealed by the insider’s period-n trade. If the insider trades more aggressively in period n

and uses more of his private information, then P ∗
n −P ∗

n−1 reveals more new information and

its variance k2
n is higher.

Conditions in (13) are the insider’s “information budget constraint.” In each period n,

the total amount of information the insider has utilized during periods 1 through n should

be no more than the total amount of information he has received by then.

The objective in (12) is essentially the sum of the insider’s expected profits across N

periods. Specifically, since the market maker is risk neutral and breaks even, the insider’s

expected profits in period n must be equal to the noise trader’s expected loss in period n:

E[πn] = λnσ
2
u. Combined with the expression of λn in equation (8) in Theorem 1, we obtain

E[πn] =
kn
2
σu. Hence, the insider’s expected trading profit in period n is a product of his

information usage kn in the period and the volatility of noise trader’s demand σu.

We can reinterpret the constrained maximization problem in (12) and (13) as a standard

textbook consumption-saving problem subject to a borrowing constraint. Specifically, we

can consider an agent who lives for N periods and consumes Cn ≥ 0 in period n. This

agent’s flow utility in period n is u(Cn) =
√
Cn. He does not discount future so that his

life time utility is
N∑

n=1

u(Cn). The agent receives deterministic endowment income wn ≥ 0

in period n. He can save at a net interest rate of 0 but cannot borrow. Then this agent’s

consumption-saving problem is as follows:

max
{C1,··· ,CN}∈RN

≥0

(
√

C1 + ...+
√
CN),

subject to
n∑

i=1

Ci ≤
n∑

i=1

wi, for n = 1, ..., N.
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We can see that the above problem is isomorphic to the constrained maximization problem

in (12) and (13) by relabeling k2
n as Cn and σ2

F as wn.

3.2 To Dissimulate or Not? A Recursive Formulation

Given the mapping between the equilibrium characterization of our trading game and the

standard borrowing-constrained consumption-saving problem, we can follow the standard

steps in textbooks such as Merton (1992) and formulate the insider’s information usage

problem defined in (12) and (13) into a dynamic programming problem. To achieve this

representation, we introduce a state variable Σn, which measures the amount of private

information not used by the insider till period n. This variable Σn would be the counterpart

of the beginning period wealth in the dynamic programming representation for the standard

consumption-saving problem.

Formally, variable Σn is defined as follows:

Σn ≡ V ar

(
n∑

i=1

Fi|P ∗
1 , ..., P

∗
n

)
.

Note that
n∑

i=1

Fi is the total private information possessed by the insider till period n. With

trade and disclosure, the prices {P ∗
n} set by the market maker reveal some of this private

information (see the insider’s trading strategy in (4) and the market maker’s pricing rule in

(6)). If the prices reveal much information about the insider’s private information, then the

variance Σn is small. In particular, if the prices reveal all the insider’s private information

till period n, then this variance degenerates to 0. In fact, variable Σn determines whether

the insider plays a pure or mixed strategy in equilibrium (i.e., whether σzn = 0 or σzn > 0).

By equation (10), the insider plays a pure strategy in equilibrium if and only if if Σn = 0.

At the beginning of period n, the insider inherits from the previous period a stock Σn−1 of

remaining balance of unused private information. He then observes private signal Fn (which

has a variance of σ2
Fn
) and so his balance of unused information increases by σ2

Fn
, resulting
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in a total balance of Σn−1 + σ2
Fn

prior to trading. When determining his information usage

k2
n in the period-n trading, the insider faces the following constraint:

k2
n ≤ Σn−1 + σ2

Fn
. (15)

The above inequality captures the asymmetrical information transfer technology mentioned

in the introduction. That is, the insider is constrained to use the private information only

up to period n, which, in relation to the consumption-saving analogy, corresponds to the

specification that the agent can only save the current wealth to the future at a zero interest

rate but cannot borrow income from the future.

If the insider plays a pure strategy in period n, then he uses up his information and

chooses k2
n = Σn−1 + σ2

Fn
, leaving a zero balance of unused private information after period

n. If the insider plays a mixed strategy in period n, then the market maker cannot infer

from the disclosed xn all the private information possessed by the insider. In this case, the

insider chooses k2
n < Σn−1 + σ2

Fn
, leaving a positive balance of unused information to the

next period. In both cases, the amount of unused private information Σn evolves according

to

Σn = Σn−1 + σ2
Fn

− k2
n, (16)

for n = 1, ..., N , with Σ0 ≡ 0. With the aid of the budget constraint for the choice variable

k2
n given by (15) and the dynamics of the state variable Σn given by (16), we can write down

the dynamic programming representation of the insider’s information-usage problem in (12)

and (13), which is formalized in the following proposition.

Proposition 1. The equilibrium information usage kn is determined by the following dy-

namic programming problem:

Vn(Σn−1) = max
kn

[kn + Vn+1(Σn)], for n = 1, ..., N,

subject to (15) and (16), with terminal value VN+1 = 0. If Σn = 0, then in period n the
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insider is playing a pure strategy in equilibrium. If Σn > 0, then in period n the insider is

playing a mixed strategy in equilibrium.

Example: The Two-Period Case. We conclude this section by considering the case of

N = 2 as an example. That is, there are two rounds of trading and the insider receives

his private signals F1 and F2 before the first and second trading periods, respectively. As

mentioned before, our model nests the two-period model in HHL (2001) as a special case. In

HHL (2001), the insider receives only one signal before the first round of trading. Hence, if

we set σF2 = 0 in our model, our set-up is identical to the two-period model in HHL (2001).

The following proposition characterizes the equilibrium in our model for the case of N = 2.

Proposition 2. If N = 2, the equilibrium is characterized in the following two cases:

Case 1: If σ2
F1

> σ2
F2
, then the insider plays a mixed strategy in period 1 and a pure

strategy in period 2, and the equilibrium is given by

σ2
z1
=

σ2
F1

− σ2
F2

2σ2
F1

σ2
u, σ2

z2
= 0,

β1 =
σFσu√
2σF 2

1

, β2 =

√
2σu

σF

, k1 = k2 =
σF√
2
,

λ1 = λ2 =
σF

2
√
2σu

, γ1 = γ2 =
σF√
2σu

.

Case 2: If σ2
F1

≤ σ2
F2
, then the insider plays a pure strategy in both periods, and the

equilibrium is given by

σ2
z1
= σ2

z2
= 0,

βi =
σu

σFi

, λi =
σFi

2σu

, γi =
σFi

σu

, ki = σFi
, for i = 1, 2.

We observe that whether the insider plays a mixed strategy in period 1 depends on

whether he receives more private information in the first period than in the second (i.e.,

σz1 > 0 if and only if σF1 > σF2). This result can be intuitively understood from our
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consumption-saving analogy. For instance, if the agent’s total income across two periods

is $1, then the convexity of preferences, i.e., the concavity of the utility function u(Cn),

would push the agent to allocate his total wealth equally across two periods, i.e., C∗
n = $0.5.

However, whether this equal allocation is feasible depends on the income pattern since the

agent can only save but not borrow.

Suppose that the agent obtains the total life time income of $1 from receiving $0.7 in

period 1 and $0.3 in period 2, then he can achieve equal allocation, that is, he will consume

C∗
1 = $0.5 out of the first period income $0.7, and save the remaining $0.2 till next period,

so that he can also consume C∗
2 = $0.5 in period 2 from the saving of $0.2 and the second

period income of $0.3. If he receives $0.3 in period 1 and $0.7 in period 2, then he will be

forced to consume his endowments, i.e., C∗
1 = $0.3 and C∗

2 = $0.7, because he cannot borrow

to consume the ideal amount.

We can recast the above analogy intuition directly into our setting. Parallel to the

instance above, now we endow the insider with a total amount of information of 1 (i.e.,

σ2
F1

+ σ2
F2

= 1). The insider will use up all the information after trading in period 2, that

is, k2
1 + k2

2 = 1. Recall that the insider’s objective is to maximize k1 + k2. The convexity of

the quadratic function k2 would push the insider to allocate equal information usage across

periods, that is, k2∗
1 = k2∗

2 = 0.5. Again, whether this ideal allocation is feasible depends on

the information arrival pattern.

If the insider receives more information in the first period, say, σ2
F1

= 0.7 and σ2
F2

= 0.3

(which is Case 1 in Proposition 2), then he can achieve his ideal allocation. That is, he will

choose k2∗
1 = 0.5 in period 1 and leave a balance 0.2 of unused information amount to the

next period (i.e., Σ1 = σ2
F1

− k2∗
1 = 0.7− 0.5 = 0.2), so that in the next period he can choose

k2∗
2 = 0.5 (i.e., k2∗

2 = Σ1 + σ2
F2

= 0.2 + 0.3 = 0.5). This corresponds to that the insider plays

a mixed strategy in period 1 since he has kept some of his period-1 private information for

the second period. By contrast, if the insider receives less information in the first period, for

instance, σ2
F1

= 0.3 and σ2
F2

= 0.7 (which is Case 2 in Proposition 2), then the insider will
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use up his private information in period 1 (i.e., k2∗
1 = 0.3 and k2∗

2 = 0.7). In this case, he is

playing a pure strategy in both periods.

Our results in Proposition 2 generalize and sharpen those in HHL (2001). The model in

HHL (2001) belongs to Case 1 with σ2
F1

= σ2
F and σ2

F2
= 0. Our analysis in Case 1 shows that

the dissimulation result in HHL (2001) hold more generally, i.e., as long as σ2
F1

> σ2
F2
. The

dissimulation result, however, disappears in Case 2, where the insider receives less private

information in the first period than in the second (σ2
F1

< σ2
F2
). Anticipating the arrival of

more information in the second period, the insider does not dissimulate his information in

the first period. Instead, he utilizes all his private information available at that time.

4. Smoothing Information Usage

In this section, we first explore the insider’s incentive to smooth information usage over

time, and in particular, we ask when perfect smoothing, as analyzed in HHL (2001), is

possible. We then study settings featuring monotonic information arrivals, which allows

analytical characterization of the insider’s information usage choices.

4.1 When Can the Insider Achieve Perfect Smoothing?

In the discussion of the two-period case, we observe that the insider prefers to smooth

his information usage over time. We can formally show that the insider aims to minimize

the time variation of his information usage across periods. Also, minimizing the variations

in information usage over time is equivalent to minimizing the variations in price impact.

Intuitively, the insider’s private information usage is closely linked to his price impact, and

indeed, these two are proportional to each other in our model. So, smoothing information

usage across periods is the same as smoothing price impact over time. Formally, we have

the following proposition.
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Proposition 3. The insider’s information usage problem defined in (12)-(13) and the fol-

lowing two minimization problems are equivalent to each other:

(1) Smoothing information leakage over time:

min
{k1,··· ,kN}∈RN

≥0

(k1 − k)2 + ...+ (kN − k)2,

subject to the information budge constraints (13) with the final one being equality, where

k ≡ (k1 + ...+ kN)/N .

(2) Smoothing price impact over time:

min
{λ1,··· ,λN}∈RN

≥0

(λ1 − λ)2 + ...+ (λN − λ)2,

subject to the information budge constraints (13) with the final one being equality, where

λ ≡ (λ1 + ...+ λN)/N .

The equivalence result presented in Proposition 3 generalizes the insight in Kyle (1985)

and HHL (2001) who show that to maximize his expected trading profit, a monopolistic

insider minimizes the time variation of his information usage to zero, i.e, utilizes the same

amount of information each period. Since the total amount of the insider’s private informa-

tion is σ2
F , the best possible scenario is to utilize the same amount (i.e., σ2

F/N) of information

each period. This strategy, however, is not always feasible in our model, as we discussed in

the two-period example. When is this perfect smoothing of information usage possible? The

answer is provided in the following proposition.

Proposition 4. The necessary and sufficient condition for perfect smoothing of information

usage (i.e., k2∗
n = σ2

F/N for n = 1, · · · , N) is

n∑
i=1

σ2
Fi

≥ n

N
σ2
F , for n = 1, · · · , N. (17)

Under condition (17), sufficient private information arrives early such that the insider

always has no less than σ2
F/N unused information available in each period. Hence, he utilizes
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σ2
F/N private information, and if there is any left unused (i.e., if Σn > 0), the insider saves

it for future trading through dissimulation (i.e., by adopting a mixed strategy).

Proposition 5. If the inequalities in (17) hold strictly for n ≤ N − 1, the insider adopts

a mixed strategy in all but the last period and the equilibrium in period n has the following

properties

λn =
σF

2
√
Nσu

, (18)

E[πn] =
σFσu

2
√
N
, (19)

Un = (1− n/N)σ2
F , (20)

where Un, which negatively measures price informativeness, is the uncertainty of the asset

liquidation value conditional on asset prices till period n:

Un ≡ V ar (F |P ∗
1 , ..., P

∗
n) .

The conditions in (17), with strict inequalities, guarantee that the insider’s information

arrives sufficiently in early rounds such that he always has more than σ2
F/N private informa-

tion in each period. As shown in Proposition 4, the insider utilizes σ2
F/N private information

each period. To achieve that, the insider needs to adopt a mixed strategy in all but the last

period to dissimulate his private information. Since the insider utilizes information at a con-

stant rate, his price impact and expected trading profit are also constant across period, as

shown in equations (18) and (19), respectively. Finally, since the insider utilizes his private

information at a constant rate, as shown in equation (20), the price informativeness increases

linearly over time.

It is interesting to compare the above results with those in HHL (2001), where the insider

receives all his private information in the first period: σ2
F1

= σ2
F and σ2

Fi
= 0 for i = 2, ...N .

This is a special case of (17). In equilibrium, the insider adopts a mixed strategy and utilizes

the same amount of private information each period. Proposition 5 shows that these results

hold more generally under the conditions in (17).
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4.2 Examples: Monotonic Information Arrivals

In this subsection, we consider two examples with monotonic information arrival patterns.

In Case 1, the insider’s information arrives at a decreasing rate, that is

σ2
Fn

> σ2
Fn+1

for n = 1, ..., N − 1. (21)

In Case 2, the insider’s information arrives at an increasing rate, that is

σ2
Fn

< σ2
Fn+1

for n = 1, ..., N − 1. (22)

These two cases are a generalized version of the two cases in the two-period example.

In Case 1, more private information arrives at in early rounds. Since condition (21) is a

special case of (17), as shown in Proposition 4, the insider adopts a mixed strategy in all but

the last period and utilizes the same amount of information each period, k2∗
n = σ2

F/N , for

n = 1, ..., N . That is, the insider can can perfectly smooth his information usage over time.

Constant information usage is not feasible in Case 2. Since the private information arrives

at an increasing rate, the insider does not possess enough private information in early rounds

to utilize σ2
F/N information each period. The equilibrium in Case 2 is summarized in the

following proposition.

Proposition 6. Under the conditions in (22), the insider adopts a pure strategy in every

period and the equilibrium in period n, for n = 1, ..., N , has the following properties

k∗
n = σFn , (23)

λn =
σFn

2σu

, (24)

E[πn] =
σFnσu

2
, (25)

Un > (1− n/N)σ2
F , n ̸= N. (26)

Anticipating the arrival of more private information in the future, the insider utilizes

his current private information more aggressively. In fact, as shown in (23), the insider
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utilizes all his private information (i.e., adopts a pure strategy) each period. It has been

noted in the literature that a monopolistic insider has the incentive to minimize the price

impact by either breaking down his order into small ones (Kyle, 1985) or by adding noise

to his order (HHL, 2001) to “go down” the market maker’s demand curve. Proposition 6

shows that the expectation of future private information expedites the insider’s usage of his

private information. It generalizes the results in the two-period example and shows that

when private information arrives at an increasing rate, the insider chooses to fully utilize

his private information each period. Moreover, since the insider utilizes information at an

increasing rate, his price impact and expected trading profits also increase over time, as

shown in equations (24) and (25). Finally, since the insider’s information budget constraint

is binding, he utilizes less information than in Case 1 and the stock price informativeness is

lower than that in Case 1 (equation (26)).

Numerical Example. To further illustrate the equilibrium in detail, we analyze a numer-

ical example of Cases 1 and 2. Specifically, we set N = 10, σ2
F = 1, and σ2

u = 0.1. The

insider’s private information arrives at a linearly decreasing rate in Case 1:

σ2
Fn

=
2(N − n+ 1)

N(N + 1)
σ2
F , (27)

and at a linearly increasing rate in Case 2:

σ2
Fn

=
2n

N(N + 1)
σ2
F . (28)

The equilibria in these two cases are summarized in Figure 2. The upper left panel plots

the trading intensity βn against the trading period n. The dashed line represents Case 1,

the case with a decreasing information arrival rate in (27), while the solid line represents

Case 2, the case with an increasing information arrival rate in (28). In Case 1, anticipating

less private information in later periods, the insider exploits his current private information

less aggressively (βn is smaller) in early periods to save his information for later periods. In

contrast, when anticipating an increasing information arrival rate in Case 2, as shown by
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the solid line, the insider would exploit his private information more aggressively in earlier

periods.

Figure 2. Equilibrium under Monotonic Information Arrivals

This figure plots the trading intensity βn, price impact λn, the noise in the insider’s demand

σ2
zn , and price informativeness Un respectively, for the case with a decreasing information

arrival rate as specified in equation (27) (dashed line) and the case with an increasing informa-

tion arrival rate as specified in equation (28) (solid line). Parameter values: σ2
F = 1, σ2

u = 0.1,

and N = 10.
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The upper right panel reports the price impact over time in equilibrium. As noted in

Proposition 5, in Case 1 (represented by the dashed line), the insider utilizes the same amount

of private information each period, leading to a constant price impact. The solid line shows

that when private information arrives at increasing rate in Case 2, the price impact increases

over time. This is because, as shown in Proposition 6, the insider utilizes all available private
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information each period and hence exploits more private information over time.

The lower left panel reports how the insider dissimulates his private information. The

dashed line shows that in Case 1, the case with a decreasing information arrival rate, the

insider adopts a mixed strategy (i.e., σ2
zn > 0) in all but the last period. In contrast, when

the insider’s private information arrives at an increasing rate in Case 2, as shown by the

solid line, he always adopts a pure strategy (i.e., σ2
zn = 0).

Finally, the lower right panel plots the price informativeness measure Un, which is the

uncertainty about the liquidation value conditional on asset price history till period n, against

time n. The dashed line shows that in the case with a decreasing information arrival rate,

the insider utilizes the same amount of information each period. The uncertainty decreases

linearly since the asset price reveals the same amount of information each period. In Case

2, where the insider’s private information arrives at an increasing rate, the insider possesses

less private information in earlier periods. Although all private information is revealed

each period, the uncertainty still decreases more slowly than in the case with a decreasing

information arrival rate (i.e., the solid line is above the dashed line).

5. Interpretation of the Mixed Strategy

When describing the mixed strategy played by an informed trader in Kyle-type models,

researchers such as HHL (2001) and Yang and Zhu (2020) often loosely interpret it as the in-

formed trader adding noise through randomization. This interpretation usually has a flavor

that the trader consciously randomizes by actively choosing the amount of noise in his strat-

egy.2 However, in the game theory literature, it is well recognized that this interpretation,

2For instance, when defining dissimulation as the mixed strategy, HHL (2001, p. 666) state that “(t)he

strategy balances immediate profits from informed trades against the reduction in future profits following

trade disclosure and, hence, revelation of some of the insider’s information. Our results show the optimality

of adding a random noise component to informed trades, thereby diminishing the market maker’s ability to

draw inferences from the public record.”
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dubbed as a “naive” interpretation of “mixed strategies as objects of choices” by Osborne

and Rubinstein (1994, p. 37), is not entirely satisfactory.3 In a mixed-strategy equilibrium,

the insider does not deliberately choose the noise component of his order. Instead, he simply

passively takes the noise component as given. In our model, the insider is just indifferent

across all orders given the market maker’s pricing rules, and he is not actively choosing the

volatility of the noise, σzn . In this sense, the value of σzn is determined by the market maker’s

equilibrium behavior, and the insider takes the value passively.

To further illustrate the subtle difference between the active choice and the passive de-

termination, let us consider the classic game of “Battle of the Sexes.” In this classic game, a

man and a woman must decide on their weekend plans with the mutual preference of spend-

ing time together rather than apart. The man leans towards watching a movie, while the

woman favors going shopping. If they opt for the movie together, the man’s payoff is 2, and

the woman’s is 1; conversely, if they choose shopping, the payoffs switch to 1 for the man

and 2 for the woman. If they elect to spend the weekend apart, both receive a payoff of 0.

It is well-known that the unique mixed strategy equilibrium is that the man goes to watch

a movie with probability 2/3 and the woman goes shopping with probability 2/3. Note that

when we pin down the probability for one player, the man for instance, we do not analyze

the man’s behavior, but rather, we examine the indifference condition of the woman. In this

sense, the man’s mix probability is not the man’s active choice, but passively determined by

the woman’s equilibrium behavior.

3When discussing mixed strategies, Rubinstein (1991, p. 912-913) wrote: “The concept of mixed strategy

has often come under heavy fire. To quote Aumann (1987a): ‘Mixed strategy equilibria have always been

intuitively problematic... ’, and Radner and Rosenthal (1982): ‘One of the reasons why game-theoretic ideas

have not found more widespread application is that randomization, which plays a major role in game theory,

seems to have limited appeal in many practical situations.’ The reason for the criticism is that the naive

interpretation of a mixed strategy as an action which is conditional on the outcome of a lottery executed

by the player before the game, goes against our intuition. We are reluctant to believe that our decisions

are made at random. We prefer to be able to point to a reason for each action we take.” The literature

has suggested ways of interpreting mixed strategies based on purification, beliefs, large populations, and

evolution (see the discussions in Osborne and Rubinstein (1994) and Oechssler (1997)).
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To accommodate the usual interpretation of the insider intentionally randomizing, we

consider an alternative game in which the insider can commit a linear trading strategy in

each period as specified in equation (4) and then deliberately chooses all trading parameters

{βnσzn}Nn=1 at the beginning of the economy, say, in period 0 before any trading occurs.4 The

commitment is common knowledge in the game. Other features of the model remain the

same as the baseline model presented in Section 2. In our context, such a committed trading

strategy can be interpreted as a predetermined trading plan that specifies in advance the

trading rule according to an algorithm. The equilibrium in this variation game is such that

the insider chooses βn and σ2
zn to maximize his expected total trading profit over N periods

and the market maker takes commitment (4) as given and sets the asset price according to

his expected liquidation value of the risky asset.

Proposition 7. The equilibrium in the variation game with commitment is identical to that

characterized in Theorem 1.

The above proposition shows that the mixed strategy analyzed in Section 3. can be

thought of as the outcome of an optimization problem where the insider choose the opti-

mal amount of noise in his demand to dissimulate his private information, which therefore

formalizes the idea of “mixed strategies as objects of choice.” Note that, in the variation

game with commitment, in the worst case scenario, the insider can commit to the equilib-

rium trading strategy and hence earn the same expected profits as the insider in the baseline

model. Hence, the commitment is expected to have a non-negative value in general. The

equivalence between the equilibrium in this variation game and that in our baseline model

is due to the fact that the commitment does not have value.

Our finding is consistent with the recent paper by Bernhardt and Boulatov (2023), who

4Under this specification, the insider chooses all trading parameters simultaneously before observing any

information. Alternatively, we can also assume that the insider chooses trading parameters sequentially and

after observing his private information and public information. For instance, in the two-period economy, the

insider can choose {β1, σz1} in period 1 after observing F1 and choose {β2, σz2} in period 2 after observing

{P ∗
1 , F1, F2}. Our results are the same under this alternative assumption.
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show that commitment has no value in a one-period Kyle model.5 We analyze a multi-

period setting with mixed strategies, and use the finding to interpret the mixed strategies

in our baseline model as predetermined trading plans implemented by algorithms. Of note,

Bernhardt and Boulatov (2023) also show that in games in which shocks are not normally

distributed and so the equilibrium is nonlinear, commitment does have value.

6. Conclusion

We analyze a dynamic model of a monopolistic insider who receives private information

on an ongoing basis and is subject to a post-trading disclosure requirement each period. We

show that solving the equilibrium of this trading game is equivalent to solving the insider’s

optimal information usage problem, which is isomorphic to a standard consumption-saving

problem where the agent has a power utility function and face a borrowing constraint. Hence,

we can adopt the existing methods in the consumption-saving literature, such as dynamic

programming, to solve for the equilibrium for our trading game.

Analogous to the “consumption-smoothing” intuition in the consumption-saving litera-

ture, the insider in our trading game “smooths” his information usage over time given the

dynamic constraints imposed by the sequential arrival of his private information. Specifically,

the dynamics of the insider’s trade strategy are shaped by the comparison between his cur-

rent private information and his anticipated future private information. Should the insider

expects a reduction in his information advantage in the future, consistent with the insight in

the existing literature, he would dissimulate his current private information through mixed

strategies. Conversely, if the insider expects more information advantage in the future, he

would not dissimulate and utilize all his private information by adopting a pure strategy.

Finally, we show that the mixed strategy in our model can be interpreted as the insider

5Bernhardt and Boulatov (2023) consider a Stackelberg setting in which the parameters chosen by the

insider are observable to the market maker. Our result in Proposition 7 holds independent of whether the

parameters of the insider’s strategy are observable or not.
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dissimulating his private information, i.e., actively choosing the size of the noise in his trading

order to conceal his private information.
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Appendix: Proofs

Proof of Theorem 1. The proof is by backward induction. We first claim that prior to

the (n+1)th trade, the expected future profits have the following quadratic form in the linear

equilibrium:

E(
N∑

i=n+1

πi|F1, ..., Fn+1, P
∗
1 , ..., P

∗
n) = αn(

n+1∑
i=1

Fi − P ∗
n)

2 + δn, (A.1)

where αn and δn are constants with αN = δN = 0. Then with the linear pricing functions

(5) and (6) (or more generally, Pn = P ∗
n−1 + λnyn + f(y1, ..., yn−1) and P ∗

n = P ∗
n−1 + γnxn +

g(y1, ..., yn−1) where f and g are measurable functions and turn to be zero, as in Kyle’s

proof), moving backward by one step yields

E(
N∑
i=n

πi|F1, ..., Fn, P
∗
1 , ..., P

∗
n−1)

= E[xn(F − Pn) + αn(
n+1∑
i=1

Fi − P ∗
n)

2 + δn|F1, ..., Fn, P
∗
1 , ..., P

∗
n−1]

= xn(
n∑

i=1

Fi − P ∗
n−1 − λnxn) + αn(

n∑
i=1

Fi − P ∗
n−1 − γnxn)

2 + δn + αnσ
2
Fn+1

. (A.2)

Before proceeding with the maximization problem, we examine the semi-strong efficiency

condition to get that,

Pn = E(F |P ∗
1 , ..., P

∗
n−1, xn + un)

= P ∗
n−1 + E[

n∑
i=1

Fi − P ∗
n−1|βn(

n∑
i=1

Fi − P ∗
n−1) + zn + un]

= P ∗
n−1 + λn(xn + un)

with

λn =
βn(Σn−1 + σ2

Fn
)

β2
n(Σn−1 + σ2

Fn
) + σ2

zn + σ2
u

. (A.3)

Analogously, p∗n = p∗n−1 + γnxn with

γn =
βn(Σn−1 + σ2

Fn
)

β2
n(Σn−1 + σ2

Fn
) + σ2

zn

. (A.4)
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In deriving (A.3) and (A.4), we have used the relationship E(
n∑

i=1

Fi − P ∗
n−1)

2 = Σn−1 + σ2
Fn

resulting from the independence between Fn and {F1, ..., Fn−1, P
∗
n−1}. In the following, results

of Theorem 1 would be verified separately for Case (i) in which the insider employs a pure

strategy and Case (ii) in which the insider employs a mixed strategy for the nth trade.

Case (i). In the pure strategy case, σ2
zn = 0. From the formula for the insider’s trading

strategy (4) and the market maker’s pricing rule (2), we have

P ∗
n =

n∑
i=1

Fi, Σn = 0. (A.5)

Consequently,

n∑
i=1

Fi − P ∗
n−1 = P ∗

n − P ∗
n−1 = γnxn = γnβn(

n∑
i=1

Fi − P ∗
n−1)

from which, we obtain

γn =
1

βn

. (A.6)

In this case, we have

k2
n ≡ V ar(P ∗

n − P ∗
n−1) = Σn−1 + σ2

Fn
, (A.7)

which, combined with (A.5) ensures that Σn = Σn−1 + σ2
Fn

− k2
n = 0. This means that (11)

holds for n once it holds for n− 1. In other words, pure strategy can ensure that (11) holds

if the mixed strategy also ensures it (which will be shown to be the case shortly in Case (ii)).

From (A.5), the second term in (A.2) is zero, since
n∑

i=1

Fi−P ∗
n−1−γnxn =

n∑
i=1

Fi−P ∗
n = 0,

and thus the first-order condition (FOC) yields xn = βn(
n∑

i=1

Fi − P ∗
n−1) with

βn =
1

2λn

. (A.8)

The second-order condition (SOC) requires λn ≥ 0 which is equivalent to kn ≥ 0 in equilib-
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rium. With σ2
zn = 0, from (A.3), (A.6), (A.7), and (A.8), we have

λn =

√
Σn−1 + σ2

Fn

2σu

=
kn
2σu

,

βn =
σu√

Σn−1 + σ2
Fn

=
σu

kn
,

γn =
kn
σu

.

Finally, from these expressions, we can compute

E[πn] = βn(1− λnβn)(Σn−1 + σ2
Fn
) =

kn
2
σu.

Case (ii). In the mixed strategy case, σ2
zn > 0. Note that we discuss this case only for

n < N . The FOC of (A.2) gives

2(−λn + αnγ
2
n)xn + (1− 2αnγn)(

n∑
i=1

Fi − P ∗
n−1) = 0.

Since this holds for all realizations of zn in xn, it requires

− λn + αnγ
2
n = 0, (A.9)

1− 2αnγn = 0, (A.10)

from which, we obtain

γn = 2λn. (A.11)

From (A.3), (A.4) and (A.11),

β2
n(Σn−1 + σ2

Fn
) + σ2

zn = σ2
u, (A.12)

λn =
βn(Σn−1 + σ2

Fn
)

2σ2
u

. (A.13)

In this case, we have

k2
n = γ2

nV ar(xn) = γ2
n[β

2
n(Σn−1 + σ2

Fn
) + σ2

zn ] = γ2
nσ

2
u
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from which

γn =
kn
σu

. (A.14)

We have used the fact γn ≥ 0 which is equivalent to kn ≥ 0 (note that if kn < 0, then

γn = −kn/σu and replacing kn with −kn would not change anything). Indeed αn ≥ 0 since

otherwise, for some realized variables, the insider would get negative profits which would be

dominated by not trading. So, from (A.10), γn ≥ 0.

From (A.11) and (A.14),

λn =
kn
2σu

. (A.15)

Substituting (A.15) in (A.13) yields

βn =
knσu

Σn−1 + σ2
Fn

. (A.16)

Then substituting (A.16) in (A.12) can deliver the volatility of the random component in

the order flow:

σ2
zn = (1− k2

n

Σn−1 + σ2
Fn

)σ2
u. (A.17)

We need to verify that σ2
Fn

is positive in this case, i.e., k2
n < Σn−1 + σ2

Fn
. Indeed,

k2
n = V ar(P ∗

n − P ∗
n−1)

< V ar[(
n∑

i=1

Fi − P ∗
n) + (P ∗

n − P ∗
n−1)]

= V ar(
n−1∑
i=1

Fi − P ∗
n−1) + σ2

Fn

= Σn−1 + σ2
Fn
,

where the inequality follows from the fact that (
n∑

i=1

Fi−P ∗
n) is independent of P

∗
n −P ∗

n−1 and

that V ar(
n∑

i=1

Fi−P ∗
n) > 0 when σ2

zn > 0 (since V ar(
n∑

i=1

Fi−P ∗
n) = V ar(

n∑
i=1

Fi−P ∗
n−1|βn(

n∑
i=1

Fi−

P ∗
n−1) + zn), positive when zn is nondegenerate).

29



Now, from the projection theorem of normal variables, together with equations (A.12)

and (A.17), we obtain

Σn = V ar(
n∑

i=1

Fi|P ∗
1 , ..., P

∗
n , xn)

= V ar[
n∑

i=1

Fi − P ∗
n−1|βn(

n∑
i=1

Fi − P ∗
n−1) + zn]

=
(Σn−1 + σ2

Fn
)σ2

zn

σ2
u

= Σn−1 + σ2
Fn

− k2
n,

which verifies equation (11) for the mixed strategy case.

Furthermore, from (A.15), (A.16), and (A.17),

E[πn] = βn(1− λnβn)(Σn−1 + σ2
Fn
)− λnσ

2
zn =

kn
2
σu.

In this case, note that the insider strategy parameter βn in equation (7) is well defined, since

kn is uniquely determined which would be shown later.

Finally, for both cases (i) and (ii), conjecture (A.1) can be justified by backward induction

argument since when n = N , αN = δN = 0 and when n is replaced by n − 1, it still holds,

with recursions

αn−1 = βn(1− λnβn) + αn(1− γnβn)
2, δn−1 = δn + αnσ

2
Fn+1

+ αnγ
2
nσ

2
zn . (A.18)

In conclusion, all results given by equations (4)–(11) hold for both cases.

We now show how kn is determined. First, from the pricing rule (1), what the insider

obtains is what noise traders lose, that is

E[πn] = λnσ
2
u =

kn
2
σu.

Hence, the maximization objective of insider’s life-time profits in expectation can be written

in reduced form as

max
{k1,··· ,kN}∈RN

≥0

k1 + · · ·+ kN (A.19)
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with budgets (13). The solution is unique from the convex optimization theory.

Proof of Proposition 1 . Results (15) and (16) and the fact that Σn = 0(> 0) corre-

sponds to the pure (mixed) strategy have been shown in the proof of Theorem 1. Define the

value function

Vn(Σn−1) = max
k2n≤Σn−1+σ2

Fn

kn + k∗
n+1 + · · ·+ k∗

N (A.20)

where k∗
t is the optimal corresponding in period t. According to the dynamic programming

theory, Vn(Σn−1) = max
kn

[kn + Vn+1(Σn)], for n ≤ N , with VN+1 = 0.

Proof of Proposition 2. We apply the recursive method in Proposition 1. Let N = 2. In

period 2, with unused information scale Σ1 and the information endowment σ2
F2
, the insider’s

problem is:

max
k22≤Σ1+σ2

F2

k2. (A.21)

Solving this problem, we obtain k∗
2 = V2(Σ1) =

√
Σ1 + σ2

F2
. Hence, from (16), Σ2 = Σ1 +

σ2
F2

− k2
2 = 0. According to Proposition 1, σ2

z2
= 0.

Now consider period 1. With information endowment σ2
F1
, since Σ1 = σ2

F1
− k2

1, the

insider’s problem becomes

max
k21≤σ2

F1

k1 +
√
σ2
F1

+ σ2
F2

− k2
1. (A.22)

The optimal solution has two cases:

Case 1. If σF1 > σF2 , the optimum is k1 = σF/
√
2. In this case, Σ1 = σ2

F1
− k2

1 =

(σ2
F1

− σ2
F2
)/2 > 0, which accroding to Proposition 1 means σ2

z1
> 0. Specifically, from (10),

σ2
z1
=

σ2
F1

−σ2
F2

2σ2
F1

σ2
u.

Case 2. If σF1 ≤ σF2 , the optimum is k1 = σF1 . In this case, Σ1 = σ2
F1

− k2
1 = 0. Hence
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σ2
z1

= 0 according to Proposition 1. Results about β, λ, and γ are direct from (7), (8), and

(9) respectively.

Proof of Proposition 3. With conditions in (13), given the last constraint being equality,

we can show

(k1 − k)2 + ...+ (kN − k)2 =
N∑
i=1

k2
i −Nk

2
= σ2

F − (k1 + ...+ kN)
2

N
,

from which we can observe that the maximization problem defined by (12) and (13) is

equivalent to the minimization problem in Part (1) of Proposition 3. Since λn = kn/(2σu),

problem in Part (2) is equivalent to problem in Part (1).

Proof of Proposition 4. The necessity is obvious. Now for sufficiency, from Theorem

1, we only need to show that k2
n = σ2

F/N is feasible for all n ≤ N . Firstly, k2
1 = σ2

F/N

is feasible since the information available satisfies σ2
F1

≥ σ2
F/N . In general, if strategies

k2
t−1 = σ2

F/N, t ≤ n are all feasible and have been taken by the insider, then the feasible

space for k2
n is [0, σ2

Fn
+ Σn−1] with Σn−1 =

n−1∑
i=1

(σ2
Fi

− σ2
F

N
). The condition n

N
σ2
F ≤

n∑
i=1

σ2
Fi

is

equivalent to
σ2
F

N
≤ σ2

Fn
+ Σn−1 which precisely establishes the feasibility of k2

n =
σ2
F

N
.

Proof of Proposition 5. Proposition 4 guarantees that in equilibrium kn = σF√
N
. With

these strategies, Σn =
n∑

i=1

(σ2
Fi
− σ2

F/N) > 0 for n ≤ N − 1 and ΣN = 0. From Proposition 1,

insider adopts mixed strategies before the last period and pure strategy in the last period.

Equations (18) and (19) follow directly. By definition, Un = Σn + V ar(Fn+1 + · · · + FN) =

(1− n/N)σ2
F .

Proof of Proposition 6. Suppose otherwise, if the insider does not always play pure

strategies, then let us consider the first mixed one. Formally, denote

n0 = inf{n, σ2
zn > 0}.

Then from Theorem 1, k2
n = σ2

Fn
and Σn = 0 for n ≤ n0 − 1 (if n0 = 1, denote k2

0 = σ2
F0

=

Σ0 = 0). Moreover, k2
n0

< σ2
F0

since σ2
zn0

> 0 and Σn0−1 = 0. Thus there must exist some
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n1 > n0, such that k2
n1

> σ2
Fn1

to ensure that
N∑

n=n0

k2
n =

N∑
n=n0

σ2
Fn
. Now claim that in this

case, if kn0 and kn1 are replaced by
√

k2
n0

+ ϵ and
√

k2
n1

− ϵ respectively, with ϵ positive

and small enough, and with other kn unchanged, then
N∑

n=n0

kn can be larger. In fact, since

k2
n1

> σ2
Fn1

≥ σ2
Fn0

> k2
n0
, we can let ϵ ∈ (0, k2

n1
− k2

n0
). Then it is direct to show that√

k2
n0

+ ϵ+
√

k2
n1

− ϵ > kn0 + kn1 .

This contradicts the maximization objective (12). Hence, insider always adopts pure strate-

gies. From Proposition 1 and (16), k2
n = σ2

Fn
always hold. Equations (23)-(25) follow directly.

From Σn = 0 and that σ2
Fn

increases with n, Un = σ2
Fn+1

+ · · · + σ2
FN

> (1 − n/N)σ2
F , n ̸=

N .

Proof of Proposition 7. In this proof, we consider the 2-periods model, and the N-

periods cases are similar.

Recall that before all trading begins, the insider commits to the following strategies in

period-1 and 2, respectively,

xi = βi(F − P ∗
i−1) + zi, i = 1, 2, (A.23)

The noise zi is normally distributed and independent of all other variables. Trading param-

eters βi and V ar(zi)(≡ σ2
zi
)) are decision variables chosen by the insider at the beginning of

the economy. The insider’s aim is to maximize the life-time profits in ex ante expectation:

max
{βi,σ2

zi
}i=1,2

E[π1 + π2], (A.24)

where πi = (F − Pi)(βi(F − P ∗
i ) + zi), for i = 1, 2.

With (A.23), market makers know that market orders are normally distributed with

zero-mean and hence from projection theorem, they set pricing functions as

Pi = P ∗
i−1 + λi(xi + ui), i = 1, 2, and P ∗

1 = P ∗
0 + γ1x1 (A.25)
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with

λi =
βi(Σi−1 + σ2

Fi
)

β2
i (Σi−1 + σ2

Fi
) + σ2

zi
+ σ2

u

, i = 1, 2, and γ1 =
β1(Σ0 + σ2

F1
)

β2
1(Σ0 + σ2

F1
) + σ2

z1

. (A.26)

Now, we compute the profits in (A.24). With the committed trading strategies (A.23)

and corresponding pricing functions (A.25), we can compute

E[π]1 = E[(F − P1)(β1(F − P ∗
0 ) + z1)] = (1− λ1β1)β1σ

2
F1

− λ1σ
2
z1
, (A.27)

and

E[π2] = E[(F − P2)(β2(F − P ∗
1 ) + z2)] = (1− λ2β2)β2E(F − P ∗

1 )
2 − λ2σ

2
z2
, (A.28)

where

E(F − P ∗
1 )

2 = σ2
F2

+ E(F1 − P ∗
1 )

2 = σ2
F2

+ (1− γ1β1)
2σ2

F1
+ γ2

1σ
2
z1
. (A.29)

With (A.27), (A.28), and (A.29), we can express the insider’s problem (A.24) as

max
{βi,σ2

zi
}i=1,2

(1− λ1β1)β1σ
2
F1

− λ1σ
2
z1
+ (1− λ2β2)β2[σ

2
F2

+ (1− γ1β1)
2σ2

F1
+ γ2

1σ
2
z1
]− λ2σ

2
z2

The maximization about σ2
z2

yields, σ2
z2

= 0, and the SOC is λ2 > 0. The FOC about β2

yields β2 = 1/(2λ2). With these results, from (A.26),

β2 =
σu√

Σ1 + σ2
F2

and λ2 =

√
Σ1 + σ2

F2

2σu

. (A.30)

The FOC about σ2
z1

yields

−λ1 +
γ2
1σu

2
√

Σ1 + σ2
F2

= 0. (A.31)

With (A.31), the FOC about β1 gives

1− γ1σu√
Σ1 + σ2

F2

= 0. (A.32)
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All SOCs are satisfied. (A.31) and (A.32) together give the same result as in the main setup

γ1 = 2λ1.

These are key steps. Other results incuding the determination of kn are the same as those

in Theorem 1 and Proposition 1.
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