
Efficient OCR for Building a Diverse Digital History

Jacob Carlson1, Tom Bryan2, Melissa Dell1,2
∗

1Department of Economics, Harvard University; Cambridge, MA, USA.
2National Bureau of Economic Research; Cambridge, MA, USA.

∗Corresponding author: melissadell@fas.harvard.edu.

Abstract: Thousands of users consult digital archives daily, but the information
they can access is unrepresentative of the diversity of documentary history. The
sequence-to-sequence architecture typically used for optical character recognition
(OCR) – which jointly learns a vision and language model - is poorly extensible to
low-resource document collections, as learning a language-vision model requires
extensive labeled sequences and compute. This study models OCR as a character
level image retrieval problem, using a contrastively trained vision encoder. Be-
cause the model only learns characters’ visual features, it is more sample efficient
and extensible than existing architectures, enabling accurate OCR in settings where
existing solutions fail. Crucially, the model opens new avenues for community
engagement in making digital history more representative of documentary history.

A sample-efficient, extensible, open-source OCR

1

Digital texts are central to the study, dissemination, and preservation of human knowledge.
Tens of thousands of users consult digital archives daily in Europe alone (12), yet billions
of documents remain trapped in hard copy in libraries and archives around the world. These
documents contain extremely diverse character sets, languages, fonts or handwriting, printing
technologies, and artifacts from scanning and aging. Converting them into machine-readable
data that can power indexing and search, computational textual analyses, and statistical analyses
- and be more easily consumed by the public - requires highly extensible, accurate, efficient
tools for optical character recognition (OCR).

Current OCR technology - developed largely for small-scale commercial applications in
high resource languages - falls short of these requirements. OCR is typically modeled as a
sequence-to-sequence (seq2seq) problem, with learned embeddings from a neural vision model
taken as inputs to a learned neural language model. The seq2seq architecture is challenging to
extend and customize to novel, lower resource settings (22), because training a vision-language
model requires a vast collection of labeled image-text pairs and significant compute. This study
shows that on printed Japanese documents from the 1950s, the best performing existing OCR
mis-predicts over half of characters. Poor performance is widespread, spurring a large post-
OCR error correction literature (37, 40, 53) and skewing digital history towards limited settings
that are not representative of the diversity of documentary history.

This study develops a novel, open source OCR architecture, EffOCR (EfficientOCR), de-
signed for researchers and archives seeking a sample-efficient, customizable, scalable OCR
solution for diverse documents. EffOCR combines the simplicity of early OCR systems, such
as Tauschek’s 1920s reading machine, with deep learning, bringing OCR back to its roots: the
optical recognition of characters. Deep learning-based object detection methods are used to
localize individual characters in the document image. Character recognition is modeled as an
image retrieval problem, using a vision encoder contrastively trained on character crops.

EffOCR performs very accurately, even when using lightweight models designed for mo-
bile phones that are cheap to train and deploy. Using documents that are fundamental to study-
ing Japan’s remarkable 20th century economic growth, the study shows EffOCR can provide
a sample efficient, highly accurate OCR architecture for contexts where all current solutions
fail. EffOCR’s blend of accuracy and efficient runtime also makes it attractive for digitizing
massive-scale collections in high resource languages, which the study illustrates with Library
of Congress’s collection of historical U.S. newspapers (34).

Historically, the low accuracy of traditional computer vision methods made modeling lan-
guage necessary for OCR, but recent revolutionary advances in computer vision obviate this
need as long as the document is legible. This greatly reduces the cost of deploying OCR to
novel settings, as EffOCR only needs to learn the visual features of characters, not how they are
combined to form language. Extending EffOCR to novel settings requires just dozens to hun-
dreds of labeled text line images, simple training recipes, and modest compute. In contrast to
seq2seq, new characters can be added at inference time, important for contexts such as archae-
ology where new characters are regularly discovered. EffOCR furthers the mission of Layout
Parser (46) - our widely used Python package for detecting document layouts - to make digital
history more representative of documentary history.

2

Methods Overview
Modern OCR overwhelmingly uses deep neural networks - either a convolutional neural net-
work (CNN) or vision transformer (ViT) - to encode images. The representations created by
passing an input image through a neural encoder are then decoded to the associated text.

Figure 1 underscores two fundamental differences between EffOCR and seq2seq. First,
sequence-to-sequence architectures typically require line level inputs, and individual characters
are not localized; rather, images or their representations are divided into fixed size patches. In
contrast, EffOCR localizes characters using modern object detection methods (5, 27). Second,
seq2seq sequentially decodes the learned image representations into text using a learned lan-
guage model that takes the image representations as inputs. In contrast, EffOCR recognizes
text by using contrastive training (30) to learn a meaningful metric space for character-level
OCR. The vision encoder projects crops of the same character - regardless of style - nearby,
whereas crops of different characters are projected further apart. Character embeddings are
decoded to text in parallel by retrieving their nearest neighbor in an offline index of exemplar
embeddings, created by rendering character images with a digital font.

Different vision encoders can be used interchangeably for the EffOCR character localizer
and recognizer. Three models are considered: a vision transformer (3, 5) model (EffOCR-T
Base), a convolutional (5, 36) base model (EffOCR-C Base), and a convolutional small model
(EffOCR-C Small), which uses lightweight architectures designed for mobile phones (23, 27).
The supplementary materials further describe the EffOCR architecture and training recipes and
evaluate additional models.

Evaluation Datasets
Evaluating EffOCR requires benchmark datasets that are representative of the diversity of doc-
umentary history. Traditional OCR benchmarks focus on commercial applications like re-
ceipts (24), so this study builds novel datasets. First, the study draws on documents from
historical Japan that can elucidate fundamental questions that have been understudied due to
a lack of digital data, such as the drivers of Japan’s rapid transformation from a poor agrarian
economy to a wealthy industrialized nation. Horizontally and vertically written tabular data -
providing rich information on Japanese firms and their personnel - are drawn from two 1950s
publications (26,51). A 1930s prose publication providing detailed biographies of tens of thou-
sands of individuals (25) is also examined. These texts could use over 13,000 kanji characters.

The second context is Library of Congress’s Chronicling America (LoCCA) collection,
which contains over 19 million historical newspaper page scans. Library of Congress provides
an OCR, but the quality is low (49). There is a large literature studying historical newspapers
at scale, which overwhelmingly uses keyword search and does not unlock the power of large
language models due to poor quality digitization (20). LoCCA elucidates how EffOCR: 1) per-
forms in the highest resource setting, English; 2) extensibility across Latin and kanji characters,
which differ significantly in their aspect ratios and complexity; 3) extensibility to the many
Unicode renderable languages that use the Latin script.

3

Figure 2 shows example documents. Because seq2seq requires lines as inputs, lines are
drawn randomly from the Japanese volumes and from 10 randomly selected newspapers in
LoCCA. (EffOCR could be trained to localize characters in multiline inputs). Lines correspond
to cells in tables and single lines within columns/rows in prose. The baseline training sets range
from 291 lines for Chronicling America to 1309 cells for horizontal Japanese, highly feasible
for researchers to label in an afternoon. The study’s training datasets will be publicly released.

Measurement and Comparisons
OCR accuracy is measured using the character error rate (CER), the Levenshtein distance be-
tween the OCR’ed string and the ground truth, normalized by the length of the ground truth. A
CER of 0.5, for instance, translates to mispredicting approximately half of characters.

The most widely used OCR engines are commercial products that do not support fine-
tuning and have proprietary architectures. The study compares EffOCR to Google Cloud Vi-
sion (GCV) and Baidu OCR (popular for Asian languages). We also consider four open source
architectures: EasyOCR’s convolutional recurrent neural network (CRNN) framework (48),
TrOCR’s sequence-to-sequence encoder-decoder transformer (base and small) (32), Tesseract’s
bi-directional LSTM, and PaddleOCR’s Single Vision Text Recognition (SVTR), which also
abandons seq2seq, dividing text images into small (non-character) patches, using mixing blocks
to perceive inter- and intra-character patterns, and recognizing text by linear prediction (15).

The pre-trained EasyOCR, PaddleOCR, and TrOCR models are fine-tuned on the same tar-
get data as EffOCR. Considerable resources have been devoted to pre-training these models (for
example, TrOCR was pre-trained on 684 million English synthetic text lines), and hence com-
parisons elucidate performance when these pre-trained models are further tuned on the target
datasets. For a more apples-to-apples comparison, the study examines the accuracy of these ar-
chitectures when trained from scratch on 8,000 synthetic text lines (like EffOCR) and the same
target crops. EasyOCR and PaddleOCR do not support vertical Japanese, and TrOCR does not
support any Japanese. Tesseract offered little support for fine-tuning until recently and hence
most of its applications have been off-the-shelf, which is this study’s focus.

Results
EffOCR provides a highly accurate OCR with minimal training data, in contexts where current
solutions fail. For vertical Japanese tables, the best EffOCR CER is 0.7% (Table 1). The
next best alternative, Baidu OCR, has a CER of 55.6%, making nearly 80 times more errors.
The best EffOCR CER is modestly higher for the Japanese prose (2.7%); these scans are low
resolution and some characters are illegible, to provide a context where OCR with language
modeling could offer a clear advantage. Yet EffOCR makes 5 times fewer errors than the
next best alternative (GCV), whose CER of 13.5% will not support applications that require
high accuracy. For horizontal Japanese - a higher resource setting - the EffOCR CER is 0.6%,
whereas the next-best-alternative (Paddle OCR fine-tuned on target crops) makes more than five
times more errors. The different EffOCR models produce strikingly similar results, despite the

4

significant differences in architecture (convolutional versus transformer) and model size (9.3M
to 112.5M parameters).

The CER (uncased) for the LoCCA newspapers is around 2%. GCV has the best perfor-
mance (0.5%), followed by fine-tuned TrOCR (Base) (1.3% CER). The advantage of EffOCR
on English - the quintessential high resource setting - is its open-source codebase and fast run-
time. GCV makes significant layout errors when fed full newspaper page scans, which have
complex layouts (47), and hence the performance in Table 1 cannot be replicated when it is
fed scans. GCV charges per image, and the supplementary materials estimate a cost at current
prices of $23 million USD to digitize LoCCA at the line image level, over several orders of
magnitude more costly than deploying EffOCR-C (Small).

Table 1 examines CPU runtime for open source architectures, measured by lines processed
per second on identical dedicated hardware (GPUs are prohibitively costly for mass digitiza-
tion). EffOCR-C (Small) is 31 times faster than TrOCR (Base), which is likely to be cost pro-
hibitive for large scale applications. EffOCR supports inference parallelization across characters
- promoting faster inference - whereas seq2seq requires autoregressive decoding. On English,
the most plausible scalable alternative is fine-tuned EasyOCR. With a third of the parameters
of EffOCR-C (Small), inference is faster, but the CER is around 29% higher. For horizontal
Japanese, EffOCR-C (Small) is three times more accurate and faster than PaddleOCR SVTR
(fine-tuned), the next best alternative.

Figure 3 provides representative examples of errors, showing the target crop, the localized
crop, and its five nearest neighbors, with the correct prediction highlighted in green. Errors tend
to occur when the character is illegible or homoglyphic to another character (e.g. O and 0). For
example, a 0 in one font can occasionally be indistinguishable from an O in another, an error
that would be straightforward to correct in post-processing.

EffOCR’s parsimonious vision-only architecture allows it to learn efficiently. This can be
quantified with an apples-to-apples comparison, where EffOCR-C (Base) is compared to lead-
ing open source architectures pre-trained from scratch on the same number of synthetic text
lines as EffOCR and tuned on the same target crops. Table 1 shows that EffOCR learns faster
than both seq2seq (CRNN, TrOCR) and competing vision only (SVTR) architectures, with the
next best alternative making 16 times more errors for Japanese and 4.7 times more errors for
LoCCA. The transformer seq2seq model, which is extremely data hungry, is unusable.

Varying the number of target crops used for training further elucidates how efficiently the
model learns. The supplementary materials document that on as few as 99 labeled table cells
for Japanese and 21 rows for LoCCA (a 5% training data split) - creatable in a few minutes -
EffOCR’s CER is only 5% (Japanese) and 7% (English), showing viable few shot performance.

The supplementary materials report results from additional encoders, and examine how dif-
ferent ingredients of EffOCR contribute to its performance.

Using EffOCR to Liberate Data at Scale
EffOCR can convert the publications examined in this study (25,26,51) into a knowledge graph
that provides rich information about network relationships in the historical Japanese economy.

5

These relationships can be observed through shareholding patterns, family ownership, financ-
ing, boards, occupational histories, family connections, spatial locations, and supply chains,
combined with rich financial, production, and biographical information. Japanese individual
and firm names are often only a few characters long, and hence a single OCR error can create a
significant information bottleneck. Figure 4 provides an illustrative example of one component
of this graph, showing supply chain networks in 1956 that were constructed by using EffOCR to
digitize the customers and suppliers of Japan’s 7,000 largest firms. Fine-grained control through
EffOCR allowed detecting an atypical character separating firms in the customer-supplier lists
- required for accurate digitization - that other OCR solutions did not systematically recognize,
as well as accurate digitization of firm names. Each node in the graph is a firm, whose size is
proportional to its degree centrality in the supply chain network. Shading denotes the big-three
firms in pre-war Japan (Mitsui, Mitsubishi, and Sumitomo), as well as other firms - comprising
Japan’s largest conglomerates - targeted by the Holding Company Liquidation Commission in
the late 1940s. The graph underscores that the largest pre-war firms remained the most cen-
tral in Japanese supply chain networks in the 1950s, despite various policies in the late 1940s
designed to curb their influence (13, 14, 19, 41). The many different types of relationships be-
tween individuals and firms accurately captured by EffOCR can facilitate a much more granular,
comprehensive study of Japan’s economic development than can be achieved with existing ag-
gregated data.

Discussion
Indexing, analyzing, disseminating, and preserving diverse documentary history requires com-
munity engagement of stakeholders with the requisite fine-grained knowledge of the relevant
settings. EffOCR facilitates this engagement because it is highly extensible to low-resource
settings, sample-efficient to customize, and simple and cheap to train and deploy. In contrast,
seq2seq is more aligned with the commercial objective of designing a product that is difficult
for competitors to imitate. For example, EffOCR can be trained in the cloud with free student
compute credits, whereas TrOCR required training on a multi-million dollar cluster with 32
32GB V100 cards. Lower resource languages may lack the pre-trained large language models
required to initialize a transformer seq2seq model like TrOCR, and compute resources and data
for training are also likely unavailable.

EffOCR encourages community engagement by combining the parsimonious conceptualiza-
tion of OCR from nearly a century ago with the AI revolution, integrating the follow features:

Character level: EffOCR creates semantically rich visual embeddings of individual char-
acters, a parsimonious problem. Annotators can select which of the most probable character
predictions from the pre-trained recognizer are correct, potentially using a simple mobile in-
terface, or line level labels can be mapped to the character level once a localizer has been
developed.

Language Extensibility: Language modeling advances have concentrated around less than
two dozen modern languages, out of many thousands (29). Omitting the language model makes

6

EffOCR extensible and easy-to-train. To extend EffOCR to a new language, all one needs
are renders for the appropriate character set. Additionally, characters do not need to be seen
in sequence during training, so new characters can be added at inference time, valuable for
archaeological contexts where new characters are regularly discovered. Omitting the language
model makes it easy to mix scripts, necessary for some languages. The recognizer can also be
exposed to characters in training using any desired sequencing. This is not true of multilingual
seq2seq training, which leads to many OCR errors with endangered languages (44).

Decoupling localization and recognition: Theoretically, localization and recognition (akin
to classification) may rely on different features of the image, suggesting modularity (50). Practi-
cally, decoupling allows localization and recognition to use different training sets, economizing
on annotation costs since these tasks can require very different numbers of labels depending on
the script. It also encourages community innovation and future-proofness, because it simplifies
training recipes and makes it straightforward to swap encoders as the literature advances.

Open source: EffOCR will be integrated into Layout Parser (47), an open-source python
package providing tools for off-the-shelf and customized document image analysis that is widely
used in the social science community.

Scalable: EffOCR-C (Small) achieves fast CPU inference that can scale cheaply to hun-
dreds of millions of documents.

Limitations and Future Directions: EffOCR is not currently an off-the-shelf solution.
Rather, it is designed for contexts where researchers need fine-grained control. More extensive
pre-training would be necessary to evaluate EffOCR’s zero-shot capabilities. Its sample effi-
ciency suggests the feasibility of designing an EffOCR that works well for many applications
off-the-shelf by exposing the pre-trained model to a modest number of crowd-sourced crops
from a wide range of documents. Another next step is to build upon the data augmentation and
style transfer literatures (2, 52) to generate more diverse synthetic pre-training data.

This study does not focus on handwriting due to space constraints, but the approach would
be analogous. Synthetic handwriting generators, e.g. (4), could provide extensive data for pre-
training, analogous to this study’s use of digital fonts.

There are some settings where EffOCR’s framework is not suitable. If large portions of
a document are illegible, language can provide educated guesses. Moreover, the heavy use
of ligatures in some character sets and handwriting could lead to more challenging character
localization. However, modern AI object detection methods are powerful and synthetic pre-
training can encourage robustness to localization noise.

An emerging literature explores foregoing OCR altogether to directly reason on images
(18, 38, 43, 45). The main focus is on commercial applications like receipts and train tickets.
There are not end-to-end models for performing most research tasks, and document images are
large to store. Hence, OCR is likely to remain relevant for academic applications and digital
archives for the foreseeable future. EffOCR’s simple character image retrieval framework can
expand accessibility to a rich diversity of human knowledge.

7

Acknowledgments
Funding: Harvard Data Science Initiative. National Science Foundation Award 1823616

Competing Interests: We have no competing interests to disclose.

Data and Materials Availability: Code for this study is available at (7) and (8).

List of Supplementary Materials
Materials and Methods
Supplementary Text
Tables S1 and S2
Figure S1
References

8

Tables

Character Error Rate Lines/second
Horiz. Vertical Vertical Chron. Horiz. Chron.

Model/Engine Seq2Seq? Transformer? Pretraining Parameters Jap. Jap. (tables) Jap. (prose) America Jap. America

EffOCR-C (Base) × × from scratch 112.5 M 0.006 0.007 0.030 0.023 0.79 0.49

EffOCR-C (Small) × × from scratch 9.3 M 0.010 0.009 0.036 0.028 19.46 13.40

EffOCR-T (Base) × X from scratch 101.8 M 0.009 0.007 0.027 0.022 0.19 0.31

Google Cloud Vision OCR ? ? off-the-shelf ? 0.173 0.695 0.135 0.005 ? ?

Baidu OCR ? ? off-the-shelf ? 0.060 0.556 0.177 - ? ?

Tesseract OCR (Best) X × off-the-shelf 1.4 M 1.021 0.996 0.744 0.106 4.90 4.47

EasyOCR CRNN X × off-the-shelf 3.8 M 0.191 - - 0.170 33.55 19.80
fine-tuned 0.082 - - 0.036

from scratch 0.132 - - 0.131

PaddleOCR SVTR × × off-the-shelf 11 M 0.085 - - 0.304 13.34 13.56
fine-tuned 0.032 - - 0.103

from scratch 0.097 - - 0.104

TrOCR (Base) X X off-the-shelf 334 M - - - 0.015 - 0.43
fine-tuned - - - 0.013

from scratch - - - 0.809

TrOCR (Small) X X off-the-shelf 62 M - - - 0.039 - 0.97
fine-tuned - - - 0.075

from scratch - - - 0.773

Table 1: Baseline Results and Comparisons. This table reports the performance of different
OCR architectures, off-the-shelf (without fine-tuning on target data), fine-tuned on the target
publication training set from a pre-trained OCR checkpoint, and trained from scratch on syn-
thetic text lines and the target publication training set. “?” indicates that the field is unknown
due to the proprietary nature of the architecture.

9

Figures

Figure 1: EffOCR and Seq2Seq Model Architectures. This figure represents the EffOCR
architecture, as compared to a typical sequence-to-sequence OCR architecture.

10

Figure 2: Dataset Description. Representative samples of the publications examined in this
study.

11

Figure 3: Error Analysis. Representative examples of EffOCR errors, showing the target crop,
the EffOCR localized crop, and the five nearest characters in the embedding index, with the
correct character highlighted in green.

12

Figure 4: Supply Chain Networks (Japan, 1956). Each node in the graph is a firm, whose
size is proportional to its degree centrality in the supply chain network. Shading denotes three
of the largest firms in pre-war Japan - Mitsui, Mitsubishi, and Sumitomo - as well as other firms
- comprising Japan’s largest conglomerates - targeted by the Holding Company Liquidation
Commission (HCLC) in the late 1940s.

13

Supplementary materials

Materials and Methods

Overview

EffOCR’s architecture draws inspiration from metric learning methods for efficient image re-
trieval (16), joining a recent literature on self-supervision through simple data augmentation for
image encoders (10,11,17). EffOCR contrastively trains the encoder - using a Supervised Con-
trastive loss function (30) - to learn 768-dimensional dense vector representations of character
crops. Crops of the same character - regardless of style - are projected nearby, and crops of
different characters are projected further apart. Embedded characters are decoded by retrieving
their nearest neighbor from an offline index of exemplar character image embeddings. Dis-
tances are computed using cosine similarity with a Facebook Artificial Intelligence Similarly
Search (FAISS) backend (28). The vision embeddings alone are sufficient to infer text since
they represent characters - not text lines like in seq2seq - and hence decoding them does not
require a language model or learned parameters.

The closest frameworks to EffOCR in their overall design are the original OCR conceptu-
alizations, such as Tauschek’s 1920s reading machine, which used human engineered features
rather than neural networks to recognize localized characters. More recently, CharNet (57),
developed for scene text (not documents), uses separate convolutional networks for dense clas-
sification and regression at a single scale, outputting a character class and bounding box at every
spatial location, and then aggregates this information with confidence scores to make final pre-
dictions. EffOCR in contrast deploys widely used, highly optimized object detection methods
to localize characters and then feeds character crops to a contrastively trained recognizer.1

Encoders

Different encoders can be used interchangeably for EffOCR’s character localization module
(hereafter, “localizer”) and character recognizing module (hereafter “recognizer”). We use the
following:

• EffOCR-C (Base): ConvNeXt (Tiny) (36) for both the localizer and recognizer. Both
models are initialized from the officially released checkpoint with specifications:
{size: "tiny"}

• EffOCR-T (Base): XCiT (Small) (3) for both the localizer and recognizer. Both models
are initialized from the officially released checkpoint with specifications:
{size: "small", depth: 12, patch size: 8, resoultion: 224}

• EffOCR-C (Small): YOLOv5 (Small) (27) for the localizer and MobileNetV3 (Small)
(23) for the recognizer. YOLOv5 is initialized from the officially released YOLOv5s

1Others have also used contrastive learning for OCR, in particular (1) use a self-supervised, sequence-to-
sequence contrastive learning approach.

14

checkpoint, and MobileNetV3 is initially from the PyTorch Image Models (“timm”) (54)
produced checkpoint with specifications:
{size: "small", channel multiplier: 0.50}

For ablations, we also examine:

• Swin (Tiny) (35) for both the localizer and recognizer. Both models are initialized from
the officially released checkpoint with specifications:
{size: "tiny", patch size: 4, window: 7, resolution: 224}

• ViTDet (Base) (33) for the localizer and a vanilla vision transformer, ViT (Base), for
the recognizer. Both models are initialized from the officially released checkpoint with
specifications:
{size: "base", patch size: 16, resolution: 224}

These architectures were selected for the following reasons:

• EffOCR-C (Base): ConvNeXt is a new state-of-the-art CNN backbone, in contrast to the
other three vision transformer encoders.

• EffOCR-T (Base): XCiT was chosen because of its comparative advantage in modeling
fine-grained features via the ability to accommodate smaller patch sizes through a linear
complexity attention mechanism, which may be especially suitable for character images
with small spatial extents (as measured in pixels).

• EffOCR-C (Small): MobileNetV3 (Small) and YOLOv5 (Small) were collectively cho-
sen to produce a speed optimized EffOCR, as both architectures are popular, easily cus-
tomizable, and speed-optimized by design.

• The Swin transformer was selected because of its state-of-the-art performance on object
detection tasks.

• The original ViT embeddings perform well for image retrieval, and have become a new
baseline for image retrieval (16).

The inference speed advantages offered by a smaller transformer encoder, such as Mobile-
ViT, are much more modest than that offered by MobileNetV3, and hence an EffOCR-T (small)
model is not developed, although it would be straightforward to do so should users desire it.
In tests, a MobileViTv2 (small) Recognizer model was approximately 6.5 times slower than a
comparable MobileNetv3 Recgonizer.

As the deep learning literature advances and new models are developed, EffOCR’s mod-
ular framework and simple training recipes make it straightforward to swap in new encoders,
granting the model a degree of future-proofness.

These models are all trained on a single A6000 GPU card, with hyperparameters selected
using the 15% validation split, save for the models with XCiT (Small) or ViT (Base) encoders,
which were trained on two A6000 GPU cards.

15

Character Localization

All models use an MMDetection (9) backend for localization, except for the ViTDet ablation,
which uses Detectron2 (56) and YOLOv5 (Small) (27) for EffOCR-C (Small), which uses its
own custom training scripts. Only one EffOCR configuration, EffOCR-C (Small), has a local-
izer that uses a one-stage object detection framework: YOLOv5 (Small) (27). All others use
a two-stage object detector, specifically a Cascade R-CNN (6). One stage object detection is
faster, and hence makes sense for the small model, where a central objective is fast inference
speed.

The localizers built with ConvNeXt (EffOCR-C Base), XCiT (EffOCR-T Base), and Swin
(ablation) are trained on 8,000 textlines of synthetic data for 40 epochs at a constant learning
rate of 1e− 4 and fine-tuned on benchmark data for 100 epochs at a 2.5e− 5 constant learning
rate, all with anchor generator scales [2, 8, 32]. ViTDet is trained on 8,000 textlines of synthetic
data for 40 epochs with a constant learning rate of 1e−4, and then fine-tuned for 100 epochs on
benchmark data with a 1e − 5 constant learning rate. The YOLO localizer is trained on 8,000
textlines of synthetic data for 30 epochs at a constant learning rate of 1e− 2 and fine-tuned on
benchmark data for 30 additional epochs, still at a constant 1e− 2 learning rate.

The synthetic data used for pre-training the localizers and comparison models was created
using a custom synthetic data generator, which can found at the “EffSynth” GitHub reposi-
tory (8). This generator was used to create six synthetic dataset variants, each consisting of
10,000 synthetic lines with an 80%-10%-10% train-test-validation split. The six dataset vari-
ants are: horizontal English with character sequences generated at random, horizontal Japanese
with character sequences generated at random, vertical Japanese with character sequences gen-
erated at random, horizontal English with text sequences generated from Wikipedia, horizontal
Japanese with text sequences generated from (Japanese) Wikipedia, and vertical Japanese with
text sequences generated from (Japanese) Wikipedia. Text sequence based synthetic datasets
were used to pre-train seq2seq models that rely on language context, e.g., TrOCR and CRNN;
character sequence based synthetic datasets were used to pre-train non-seq2seq models, e.g.,
EffOCR and SVTR.

Character Recognition

The EffOCR recognizer is trained using the Supervised Contrastive (“SupCon”) loss function
(30), a generalization of the InfoNCE loss (42) that allows for multiple positive and negative
pairs for a given anchor. In particular, we work with the “outside” SupCon loss formulation
Lsup

out =
∑

i∈I L
sup
out ,i =

∑
i∈I

−1
|P (i)|

∑
p∈P (i) log

exp(zi·zp/τ)∑
a∈A(i) exp(zi·za/τ)

as implemented in PyTorch Metric Learning (39), where τ is a temperature parameter, i
indexes a sample in a “multiviewed” batch (in this case multiple fonts/augmentations of charac-
ters with the same identity), j(i) is the index of a positive sample (in this case other characters
that share the same identity), P (i) is the set of indices of all positives in the multiviewed batch
that are distinct from i, A(i) is the set of all indices excluding i, and z is an embedding of a
sample in the batch (30).

16

To create training batches for the recognizer, EffOCR uses a custom m per class sampling
algorithm without replacement adapted from the PyTorch Metric Learning repository (39). This
metric learning batch sampling algorithm also implements batching and training with hard nega-
tives, where the negative samples in a batch are selected to be semantically close to one another,
and thus contrasts made between anchors and hard negatives may be especially informative for
the model to update on. Indeed, one of the main advantages of contrastive training is that it
allows the learning process to exploit hard negative mining.

More specifically, the custom batch sampling algorithm samples m character variants for
each class (character) - drawn from both target documents and augmented digital fonts. We
choosem = 4 and the batch size is 128, meaning 4 styles/representations of each of 32 different
characters appear in each batch. The model learns to map character crops of the same identity
to similar dense vectors in a semantically rich, high-dimensional vector space, and vice versa.
There is no natural definition of an epoch in the context of batch-based sampling for contrastive
learning with data augmentation in the way EffOCR formulates this procedure. For EffOCR
recognizer training, an epoch is defined as some number P passes through all unique characters
N in the character set under consideration, i.e., N = 13, 738 for Japanese and N = 91 for
English. Empirically, a good setting for Japanese is P = 1, so the total number of classes in
an epoch is 13,738, and for English P = 10, so the total number of classes in an epoch is 910.
Sampling for each class occurs without replacement, for better coverage of character variants.
Because of this, the number of passes P matters, as it determines the number of character
variants used for contrastive training in each epoch.

Every character crop that appears in the training set is embedded using a model first trained
without hard negative mining/sampling, and for each we find its 8 nearest neighbors. The
EffOCR recognizer is then trained again from scratch, with batches being sampled with an m
per class sampler (without replacement) that is further modified to randomly intersperse hard
negative sets (8 nearest neighbor characters, m = 4 variants of each) throughout batches.

EffOCR is trained on digital font renders from readily available fonts (13 for Japanese and
14 for English), along with a modest number of labeled crops from the target datasets.2 The dig-
ital fonts are augmented by randomly applying affine transformations (translation and scaling);
background coloring, color jittering, color inversion, and grayscaling; and Gaussian blurring.
The model trains on digital fonts and labeled crops together, since the objective is to learn gen-
eral purpose embeddings that would map target crops nearby to digital renders. All recognizer
models except MobileNetV3 use an AdamW optimizer with weight decay of 5e− 4, a SupCon
loss with temperature of 0.1, a learning rate of 2e − 5, and a batch size of 128. MobileNetv3
uses the same parameters except a learning rate of 2e− 3. The Japanese datasets are trained for
60 epochs and the English dataset for 30.

2Fonts for Japanese included: Dela Gothic One Regular; Hachi Maru Pop Regular; Hina Mincho Regular;
Komorebi Gothic; Kosugi Regular; New Tegomin Regular; Noto Serif CJK JP Regular; Reggae One Regular;
Shippori Mincho B1 Regular; Stick Regular; taisyokatujippoi7T5; Tanugo Regular; and Yomogi Regular. Fonts
for English included: Anton Regular; Cutive Mono Regular; EB Garamond Regular; Fredoka Regular; IM Fell
DW Pica Regular; NewYorker-jLv; Noto Serif Regular; Oldnewspapertypes-449D; Orbitron Regular; Special Elite
Regular; Ultra Regular; VT323 Regular; ZaiConsulPolishTypewriter-MVAxw; and ZaiCourierPolski1941-Yza4q.
See the EffOCR GitHub repository for the font files themselves (7).

17

After recognizer training is completed, the recognizer is used as an encoder to create an
offline index of exemplar character embeddings to be searched at inference time for the purposes
of character recognition. Specifically, the exemplar character embedding index is created by
embedding image renders for all the unicode characters supported by the Google Noto Serif
font series, i.e., Noto Serif CJK JP Regular for models trained for Japanese OCR and Noto Serif
Regular for models trained for English OCR. The Google Noto series is chosen as an exemplar
font due to both its extremely wide coverage of glyphs and the simplicity of its style, though, by
virtue of EffOCR’s training, other fonts could be used as well. At inference time, FAISS (28) is
used to perform an inner product similarity search that compares character embeddings in the
sample being inferenced to exemplar character embeddings in this offline index; identities are
assigned to inferenced characters using the identity of that character’s nearest neighbor in the
offline exemplar index, i.e., k-NN classification with k = 1.

For case sensitive applications, EffOCR character recognition for English text can also be
lightly post-processed to help better differentiate uppercase and lowercase letters from one an-
other: one can force a character to be uppercased or lowercased through simple rules based
statistics about the dimensions of bounding boxes (in the sample undergoing inference). This
procedure is irrelevant for results reported in this text, however, for which CER is measured
uncased.

Checkpoints/weights for all recognizers are supported by implementations from timm (54).

Comparisons

To examine sample efficiency, we train alternative architectures from scratch, on the same num-
ber of synthetic text lines used to train EffOCR. Specifically, the comparison architectures are,
as applicable, initialized with “default” pre-trained checkpoints that have not yet been exposed
to an OCR task, e.g., masked language model pre-trained weights for text transformers or Im-
ageNet pre-trained weights for CNNs and vision transformers. These comparison architectures
are then trained on 8,000 synthetic text lines per the applicable synthetic dataset variant (see:
Methods - Synthetic Data) as a form of standardized OCR-task-specific pre-training. They are
then fine-tuned on the same benchmark datasets used to assess EffOCR, but with varying train-
test-validation splits: 70%-15%-15%, 50%-25%-25%, 20%-40%-40%, 5%-47.5%-47.5%, and
0%-50%-50% (i.e., zero-shot).

The hyperparameters used for initializing and training comparison models are as follows:

• The EasyOCR implemented CRNN (48) comparison is trained from a random initial-
ization (as is the default in EasyOCR) for 100,000 iterations on the horizontal English
text sequence and horizontal Japanese text sequence synthetic datasets, respectively. The
learning rate is fixed at 1.0 with an Adadelta optimizer and the batch size is 128, per
the EasyOCR configuration defaults. The architecture uses VGG for feature extraction,
a BiLSTM for seq2seq/language modeling, and a CTC loss, as also is the EasyOCR de-
fault. A new prediction head is used to match the character set associated with EffOCR
for Japanese. The resulting model is then fine-tuned for 30,000 iterations with a batch
size of 64, and all other hyperparameters the same, on the benchmark datasets of varying
splits.

18

• The SVTR (15) comparison is first trained from a random initialization for 500 epochs
with an Adam optimizer with cosine-scheduled learning rate of 0.001 and batch size of 32
on horizontal English character sequence and horizontal Japanese character sequence syn-
thetic datasets, respectively. All these hyperparameters are PaddleOCR defaults, which
are also used for fine-tuning on the benchmark dataset splits.

• The TrOCR (32) comparison models are initialized from the appropriate vision trans-
former and language transformer pre-trained encoder and decoder checkpoints: for TrOCR
(Base) this is the officially released BEiT (Base) checkpoint and the officially released
RoBERTa (Large) checkpoint used by the TrOCR authors for model initialization; for
TrOCR (Small) these are similarly the officially released checkpoints for DeiT (Small)
and MiniLM used by the TrOCR authors for their model initialization. These check-
points are exported directly from the TrOCR GitHub repository (31) using a modified
script originally authored by Hugging Face (55), such that training is possible in native
PyTorch with Huggingface model implementations. TrOCR (Base) is trained on the hor-
izontal English synthetic text sequence dataset for 60 epochs at a fixed learning rate of
5e − 7 with a batch size of 16; TrOCR (Small) is trained for 40 epochs, with all other
hyperparameters the same. (The learning rate was selected based on experiments with the
validation set.) The resulting models are then fine-tuned with the same hyperparameters
on the various benchmark dataset splits.

To evaluate how existing solutions perform when fine-tuned on the EffOCR benchmark
datasets, existing pre-trained checkpoints from the EasyOCR CRNN, PaddleOCR SVTR, and
TrOCR (Base) and TrOCR (Small) models are fine-tuned on the baseline 70%-15%-15% split of
the benchmark datasets. Specifically, the 15% validation set is used for hyperparameter tuning
and the 15% test set is used to construct the results reported in the study.

For all comparison models, training hyperparamters are the same as used during the sample
efficiency assessments with standardized synthetic pre-training, save that prediction heads for
relevant models are left as they are by default. Model initialization differs, accordingly: TrOCR
(Base) and TrOCR (Small) use microsoft/trocr-base-stage1 and
microsoft/trocr-small-stage1 checkpoints, respectively; EasyOCR CRNN uses the
most recently released japanese g2.pth and english g2.pth checkpoints; and Pad-
dleOCR SVTR uses the most recently released japan PP-OCRv3 rec train and
en PP-OCRv3 rec train best accuracy checkpoints.

Inference Speed Comparisons

For digitizing large-scale collections, fast inference on a CPU is necessary, due to the high costs
of GPU compute. All comparisons are made on four 2200 MHz CPU cores, selected to represent
a plausible and relatively affordable research compute setup. To standardize measurements of
speed, each model generated predictions on the same 15% test set. All EffOCR models are
implemented with ONNX Runtime for cross-compatibility and speed.

19

Inference speed is inherently dependent on implementation and it is plausible that the other
open-source architectures may be updated in the future to achieve faster inference speeds. A
strong correlation between model size and inference speed is apparent and intuitive, highlight-
ing the utility of the EffOCR-C (Small) model for digitizing knowledge - like the Chronicling
America collection - at scale.

A random sample of 10 LoCCA scans shows an average of 1944 column x lines per scan
(historical newspapers used small fonts and contained few images), which implies the cost at
current prices to digitize the LoCCA collection at the line level using GCV would be over 23
million US dollars.

Using FS4 VM instances in Microsoft Azure to process all content in the LoCCA collection
for one randomly selected day per decade, on average it took 17.21 seconds to process 1,000
lines with EffOCR-C (small). At current prices, this translates to a cost of $0.000908 per one
thousand lines, as compared to GCV’s current prices of $1.50 (first 5 million units) and $0.60
(above 5 million units) per thousand lines to process Chronicling America at the line level.

Benchmark Dataset Creation

The OCR systems evaluated in this study take lines (cells in tables or individual lines from
columns in prose) as inputs. These segments were created using a Mask R-CNN (21) model
custom-trained with Layout Parser (47), an open-source package that provides a unified, deep
learning powered toolkit for recognizing document layouts. Mask R-CNN was applied to the
three Japanese publications considered and to ten different newspapers randomly selected from
Chronicling America. Segments were selected at random for inclusion in this study’s bench-
mark datasets. Table S-1 provides dataset statistics.

To create the character region and text annotations, three highly skilled annotators - under-
graduate and graduate students - annotated each segment. All discrepancies were then hand
checked and resolved by the study authors. Each of the datasets has a 70%-15%-15% train-
validate-test split used for baseline evaluations. The validation set was used for model develop-
ment, whereas the test set was used only once, to create the results reported in this study.

Supplementary Text

Ablations

To elucidate which components of EffOCR are essential for its performance, several ablations
are examined in Table S-2: using a simple feedforward neural network classifier head for recog-
nition instead of performing k-nearest neighbors classification3, training with and without hard
negatives, disabling training on synthetic data for the recognizer and localizer, and the use of
alternative vision encoders. All ablations use a fixed set of hyperparameters that are associ-
ated with a specific localizer-recognizer configuration; these hyperparameters are outlined in
the sections on Character Localization and Character Recognition.

3Implicitly, retrieving the nearest neighbor character from an index of offline exemplar character embeddings,
as the EffOCR recognizer does by default, is k-NN classification with k = 1.

20

Modeling character-level classification as an image retrieval problem weakly dominates the
classification performance when using a standard multilayer perceptron with softmax procedure
for classification. OCR as retrieval is chosen as the baseline not only due to its performance, but
because it also allows for adding new characters at inference time (just embed a new exemplar
character and add it to the offline index) - common in historical and archaeological settings -
and because efficient similarity search technologies like FAISS (28) provide fast inference.

Removing hard negatives increases the character error rate substantially, particularly for
Japanese, which has many characters with highly similar visual appearances, e.g., some multi-
stroke kanji are nearly identical to one another and differ only in the slants of some strokes.
Using hard negatives in constrastive training effectively incentivizes the model to distinguish
between these very visually similar characters.

Training on only labels from the target documents leads to a large deterioration in perfor-
mance for Japanese. This is as expected, given that only a fraction of kanji characters appear
in the small training datasets. The deterioration in performance is modest for English, where
there are far fewer characters. The opposite is true for character localization. Localization for
English is a harder problem than for Japanese because character silhouettes and aspect ratios
are more variable.

Two additional vision transformer encoders are explored: Swin (Tiny) (35) for both the lo-
calizer and recognizer and ViTDet (Base) (33) for the localizer and a vanilla vision transformer,
ViT (Base), for the recognizer. The performance is similar to the base EffOCR-C and EffOCR-T
models.

Sample Efficiency

To examine how efficiently EffOCR learns in comparison to leading open source architec-
tures, we train different OCR models from scratch using varying amounts of annotated data.
EffOCR-C (Base) is compared to SVTR (implemented via PaddleOCR) (15), CRNN (imple-
mented via EasyOCR) (48), and TrOCR (32). All architectures are pre-trained from scratch
on 8,000 synthetic text lines, starting from pre-trained checkpoints not customized for OCR
when supported by the framework. They are then fine-tuned on the study’s benchmark datasets,
with varying train-test-validation splits: 70%-15%-15%, 50%-25%-25%, 20%-40%-40%, 5%-
47.5%-47.5%, and 0%-50%-50% (i.e., zero-shot). These exercises are performed for LoCCA
and horizontal Japanese, as vertical Japanese is not supported by the comparison architectures.

Figure S-1 plots the percentage of the benchmark dataset used in training on the x-axis and
the CER on the y-axis. None of the architectures perform very well zero-shot - when trained
only on synthetic data - and synthetic data generation is not this study’s focus. On just 99
labeled table cells for Japanese and 21 labeled rows for LoCCA (the 5% train split), EffOCR’s
CER is only 5% (Japanese) and 7% (English), showing viable few shot performance. The other
architectures remain unusable. EffOCR performs nearly as well using 20% or training data
as using 70%, where it continues to outperform all other alternatives. This illustrates that its
parsimonious architecture learns efficiently.

21

Supplementary Tables

Horiz. Jap. Tables Vert. Japanese Tables Vert. Jap. Prose Chronicling America

Train Lines 1309 898 459 291
Val Lines 280 192 98 62
Test Lines 281 193 100 64
Total 1870 1283 657 417

Train Chars 3089 3296 5832 7438
Val Chars 673 677 1063 1708
Test Chars 682 701 1111 1727
Total 4444 4674 8006 10873

Table S-1: This table reports the number of annotated lines and characters in the training, vali-
dation, and test sets of this study’s four benchmarks.

Feed Forward Hard Neg. No Synthetic Data Encoder
EffOCR-C (Base) Neural Net Off Recognizer Localizer Swin (Tiny) ViT (Base)

Horizontal Japanese 0.006 0.006 0.041 0.594 0.009 0.009 0.010
Vertical Japanese (tables) 0.007 0.010 0.087 0.700 0.016 0.016 0.010
Vertical Japanese (prose) 0.030 0.038 0.076 0.788 0.032 0.036 0.027
Chronicling America 0.023 0.037 0.045 0.027 0.068 0.025 0.037

Table S-2: This table provides the character error rate. Feed Forward Neural Net models the
recognizer as a classification problem with a feed forward neural network, Hard Neg. Off does
not include hard negatives in recognizer training, No Synthetic Data turns off synthetic data
training in the recognizer and localizer, respectively, and Swin (Tiny) and ViT (Base) are alter-
native vision encoders.

22

Supplementary Figures

Figure S-1: Sample Efficiency. This figure plots the percentage of the benchmark dataset used
in training against the character error rate, for different OCR model architectures.

23

References
1. Aviad Aberdam, Ron Litman, Shahar Tsiper, Oron Anschel, Ron Slossberg, Shai Mazor, R

Manmatha, and Pietro Perona. Sequence-to-sequence contrastive learning for text recogni-
tion. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 15302–15312, 2021.

2. Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle: A residual-based stylegan
encoder via iterative refinement. Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6711–6720, 2021.

3. Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze, Armand
Joulin, Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al. Xcit: Cross-
covariance image transformers. Advances in neural information processing systems, 34,
2021.

4. Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fa-
had Shahbaz Khan, and Mubarak Shah. Handwriting transformers. Proceedings of the
IEEE/CVF international conference on computer vision, pages 1086–1094, 2021.

5. Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object
detection. Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 6154–6162, 2018.

6. Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High quality object detection and
instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(5):1483–1498, 2019.

7. Jacob Carlson, Tom Bryan, and Melissa Dell. Effocr. https://github.com/
dell-research-harvard/effocr, 2023.

8. Jacob Carlson, Tom Bryan, and Melissa Dell. Effsynth. https://github.com/
dell-research-harvard/effsynth, 2023.

9. Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun,
Wansen Feng, Ziwei Liu, Jiarui Xu, et al. Mmdetection: Open mmlab detection toolbox
and benchmark. arXiv preprint arXiv:1906.07155, 2019.

10. Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
15750–15758, 2021.

11. Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised
vision transformers. arXiv preprint arXiv:2104.02057, 2021.

12. Guillaume Chiron, Antoine Doucet, Mickaël Coustaty, Muriel Visani, and Jean-Philippe
Moreux. Impact of ocr errors on the use of digital libraries: Towards a better access to
information. In Proceedings of the 17th ACM/IEEE Joint Conference on Digital Libraries,
JCDL ’17, page 249–252. IEEE Press, 2017.

13. Theodore Cohen. Remaking Japan: The American occupation as new deal. Free Press,
New York, 1987.

24

https://github.com/dell-research-harvard/effocr
https://github.com/dell-research-harvard/effocr
https://github.com/dell-research-harvard/effsynth
https://github.com/dell-research-harvard/effsynth

14. Mochikabu Kaisha Seiri Iinkai(Holding Company Liquidation Commission). Nihon za-
ibatsu to sono kaitai (The Dissolution of Japan’s Zaibatsu, volume 2. Hara Shobo, Toyko,
1973.

15. Yongkun Du, Zhineng Chen, Caiyan Jia, Xiaoting Yin, Tianlun Zheng, Chenxia Li, Yuning
Du, and Yu-Gang Jiang. Svtr: Scene text recognition with a single visual model. arXiv
preprint arXiv:2205.00159, 2022.

16. Alaaeldin El-Nouby, Natalia Neverova, Ivan Laptev, and Hervé Jégou. Training vision
transformers for image retrieval. arXiv preprint arXiv:2102.05644, 2021.

17. Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, et al. Bootstrap your own latent: A new approach to self-supervised
learning. arXiv preprint arXiv:2006.07733, 2020.

18. He Guo, Xiameng Qin, Jiaming Liu, Junyu Han, Jingtuo Liu, and Errui Ding. Eaten:
Entity-aware attention for single shot visual text extraction. 2019 International Conference
on Document Analysis and Recognition (ICDAR), pages 254–259, 2019.

19. Eleanor M Hadley. Antitrust in Japan. Princeton University Press, Princeton, NJ, 2015.

20. W Walker Hanlon and Brian Beach. Historical newspaper data: A researcher’s guide and
toolkit, 2022.

21. Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. Proceedings
of the IEEE international conference on computer vision, pages 2961–2969, 2017.

22. Michael A. Hedderich, Lukas Lange, Heike Adel, Jannik Strötgen, and Dietrich Klakow.
A survey on recent approaches for natural language processing in low-resource scenarios.
In Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 2545–2568, Online,
June 2021. Association for Computational Linguistics.

23. Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. Proceedings of the IEEE/CVF international conference on computer vision,
pages 1314–1324, 2019.

24. Zheng Huang, Kai Chen, Jianhua He, Xiang Bai, Dimosthenis Karatzas, Shijian Lu, and
CV Jawahar. Icdar2019 competition on scanned receipt ocr and information extraction.
2019 International Conference on Document Analysis and Recognition (ICDAR), pages
1516–1520, 2019.

25. Jinji Koshinjo. Jinji koshinroku. Jinji Koshinjo, 1939.

26. Jinji Koshinjo. Nihon shokuinrokj. Jinji Koshinjo, 1954.

27. Glenn Jocher. YOLOv5 by Ultralytics, 5 2020.

28. Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus.
IEEE Transactions on Big Data, 7(3):535–547, 2019.

25

29. Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. The
state and fate of linguistic diversity and inclusion in the nlp world. arXiv preprint
arXiv:2004.09095, 2020.

30. Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola,
Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. arXiv
preprint arXiv:2004.11362, 2020.

31. Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun
Li, and Furu Wei. Trocr github repository. https://github.com/microsoft/
unilm/tree/master/trocr, 2021.

32. Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li,
and Furu Wei. Trocr: Transformer-based optical character recognition with pre-trained
models. arXiv preprint arXiv:2109.10282, 2021.

33. Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision trans-
former backbones for object detection. arXiv preprint arXiv:2203.16527, 2022.

34. Library of Congress. Chronicling America: Historic American Newspapers, 2022.

35. Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Bain-
ing Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv
preprint arXiv:2103.14030, 2021.

36. Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and
Saining Xie. A convnet for the 2020s. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11976–11986, 2022.

37. Lijun Lyu, Maria Koutraki, Martin Krickl, and Besnik Fetahu. Neural ocr post-hoc correc-
tion of historical corpora. Transactions of the Association for Computational Linguistics,
9:479–483, 05 2021.

38. Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on
document images. Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pages 2200–2209, 2021.

39. Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. Pytorch metric learning, 2020.

40. Thi Tuyet Hai Nguyen, Adam Jatowt, Mickael Coustaty, and Antoine Doucet. Survey of
post-ocr processing approaches. ACM Comput. Surv., 54(6), jul 2021.

41. Joint Chiefs of Staff. Basic initial post surrender directive to supreme commander for the
allied powers for the occupation and control of japan, jcs 1380/15, 1945.

42. Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

43. Seunghyun Park, Seung Shin, Bado Lee, Junyeop Lee, Jaeheung Surh, Minjoon Seo, and
Hwalsuk Lee. Cord: a consolidated receipt dataset for post-ocr parsing. Workshop on
Document Intelligence at NeurIPS 2019, 2019.

44. Shruti Rijhwani, Antonios Anastasopoulos, and Graham Neubig. Ocr post correction for
endangered language texts. arXiv preprint arXiv:2011.05402, 2020.

26

https://github.com/microsoft/unilm/tree/master/trocr
https://github.com/microsoft/unilm/tree/master/trocr

45. Phillip Rust, Jonas F Lotz, Emanuele Bugliarello, Elizabeth Salesky, Miryam de Lhoneux,
and Desmond Elliott. Language modelling with pixels. arXiv preprint arXiv:2207.06991,
2022.

46. Zejiang Shen, Ruochen Zhang, Melissa Dell, Benjamin Charles Germain Lee, Jacob Carl-
son, and Weining Li. Layout parser. https://github.com/Layout-Parser/layout-parser, 2021.

47. Zejiang Shen, Ruochen Zhang, Melissa Dell, Benjamin Charles Germain Lee, Jacob Carl-
son, and Weining Li. Layoutparser: A unified toolkit for deep learning based document
image analysis. International Conference on Document Analysis and Recognition, 12821,
2021.

48. Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end trainable neural network for
image-based sequence recognition and its application to scene text recognition. IEEE trans-
actions on pattern analysis and machine intelligence, 39(11):2298–2304, 2016.

49. David A Smith, Ryan Cordell, and Abby Mullen. Computational methods for uncovering
reprinted texts in antebellum newspapers. American Literary History, 27(3):E1–E15, 2015.

50. Guanglu Song, Yu Liu, and Xiaogang Wang. Revisiting the sibling head in object detector.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11563–11572, 2020.

51. Teikoku Koshinjo. Teikoku Ginko Kaisha Yoroku. Teikoku Koshinjo, 1957.

52. Narek Tumanyan, Omer Bar-Tal, Shai Bagon, and Tali Dekel. Splicing vit features for
semantic appearance transfer. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10748–10757, 2022.

53. Daniel van Strien., Kaspar Beelen., Mariona Coll Ardanuy., Kasra Hosseini., Barbara
McGillivray., and Giovanni Colavizza. Assessing the impact of ocr quality on downstream
nlp tasks. In Proceedings of the 12th International Conference on Agents and Artificial
Intelligence - Volume 1: ARTIDIGH,, pages 484–496. INSTICC, SciTePress, 2020.

54. Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

55. Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam
Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Trans-
formers: State-of-the-art natural language processing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing: System Demonstrations,
pages 38–45, Online, Oct. 2020. Association for Computational Linguistics.

56. Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detec-
tron2. https://github.com/facebookresearch/detectron2, 2019.

57. Linjie Xing, Zhi Tian, Weilin Huang, and Matthew R Scott. Convolutional character net-
works. Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9126–9136, 2019.

27

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/facebookresearch/detectron2

