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Searching for the best price on a product requires time, and time can run out. Initially, a

consumer may be willing to hunt for bargains on a given product, but if the search drags on

with repeated failures, she may eventually turn to full-price retailers. Yet most of the search

literature lacks this sense of urgency: the consumer will search indefinitely until finding a deal

below her constant reservation price.

In this paper, we introduce deadlines into consumer search. A deadline can represent a

specific date by which the consumer wants or needs the item she seeks, or simply a limit

to the consumer’s patience for continued search. Many consumer purchases involve a clear

deadline, such as attire for an upcoming formal event, accessories for a planned vacation,

clothing for an imminent change of season, supplies for an arriving newborn, or a gift for a

birthday or anniversary. Even outside these event-driven purchases, search may be warranted

to find a good deal on infrequently-purchased durable goods, and the consumer can easily grow

frustrated as the search drags on unsuccessfully. Thus, the consumer behaves as if she has

a deadline, even without a particular date in mind. In Section 2, we provide survey evidence

that consumers explicitly recognize deadline pressures in their searching.

In our model, each buyer enters the market needing to acquire a good before her idiosyn-

cratic deadline. The good is always available at a known posted-price outlet, but this is only

used by buyers who have reached their deadline and literally need to buy it now. All other

buyers are patient and search for opportunities to acquire the good through a discount chan-

nel. In equilibrium, a consumer will steadily increase her reservation price as her deadline

approaches, eventually turning to the full-price outlet.

The model also allows sellers to offer their goods through either the discount channel

(targeting patient buyers) or at full price (targeting desperate buyers). The latter yields a

higher price but less frequent transactions; these effects exactly offset in equilibrium, making

both channels equally profitable. Moreover, their goods are sold at a continuum of distinct

prices. We document robust empirical evidence consistent with these predictions. We then

discuss insights on consumer markets that would be missed by ignoring deadlines: in evaluating

welfare consequences of discount markets and in analyzing market design decisions.

While the model can accommodate a variety of discount sales mechanisms, our main results

depict the discount channel as an auction, both for expositional clarity and to match the data

setting in which we test our theory: eBay auctions of popular, new-in-box items. These

auctions potentially offer a low price but, from the buyer’s perspective, have a low chance of

success; meanwhile, the product is also available through posted-price listings. We focus on

these eBay auctions to leverage a unique empirical advantage offered by auction data: buyers’

bids indicate their willingness to pay over a search spell, even during failed attempts to acquire

the good. We know of no other empirical work studying consumer search where changes in

consumers’ reservation prices are observable in the data.1 We thus view eBay as an excellent

1In a similar vein, Genesove (1995) exploits failed offers in used-auto auctions to study a stationary partial
equilibrium search model, but cannot observe repeat bids over time as we do. Panel data of unsuccessful
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laboratory for studying time-sensitive search, which is likely to apply in other settings that

are harder to measure.2

We demonstrate that the model’s parameters are identified and can be estimated using

functions of sample moments from eBay data—moments such as the number of bidders per

auction or the number of auction attempts per bidder. We examine the model’s predictions

empirically using a new dataset of one million brand-new goods from 3,663 distinct products

offered on eBay from October 2013 through September 2014.3 Within this data, we focus our

analysis on consumers who participate in multiple auctions, i.e. who search across auctions

and reveal something about their reservation prices with each attempt. The data reveal a

number of curious facts that find a unified explanation in our model, such as consumers

increasing their reservation prices over time, equilibrium price dispersion, and coexistence of

multiple sales channels. None of these patterns are exploited in fitting the model, and yet

we find that the theoretical predictions for most of these facts are reasonably close to the

magnitudes observed in the data.

We find that past losers tend to bid more in subsequent auctions — 1.2 percentage points

more on average in the data, compared to 5.0 percentage points more in the fitted model. In

the data, 70.6% of the auctions are won by the bidder who has been searching the longest

(compared to 73.2% in the fitted model). In contrast, this would only occur 33.2% of the time

if search length and bids were uncorrelated, as implicitly assumed in traditional search models.

To our knowledge, this paper provides the first such evidence of time-sensitive search. Our

model contributes to a small set of previous studies that also produce non-stationary search.

We review this literature in Section 4.2.

The market response to buyer deadlines is also consistent with our model. First, deadlines

can generate significant price dispersion even within homogeneous goods, as observed in the

data. Despite sharing the same eventual utility from the good, buyers in the model differ

in their time until deadline and hence submit distinct bids. We also see price dispersion

between selling mechanisms, with auction prices averaging 15% lower than posted-price sales.

Our model provides a plausible explanation for this price dispersion among identical goods,

adding to a literature that, unlike our work, generally relies on ex-ante differences to generate

dispersion (reviewed in Section 6.2).

Second, consumer search with deadlines rationalizes the coexistence of discount and non-

discount mechanisms for identical products. Sellers use a mix of both auctions and posted

prices, and the data and model have a similar distribution of this mix across products. The

transaction attempts may exist in markets for credit, housing, online bargaining, or online labor. For example,
in studying search for auto loans, Argyle et al. (2017) observe a small fraction of consumers at a second financial
institution after failing to secure a loan at the first.

2In Section D.1 of the Technical Appendix, we demonstrate that the theory extends to other discount sales
mechanisms, including lotteries, bargaining, or discount posted prices.

3While eBay is popularly known as a avenue for buying and selling used goods, the platform sells over 80
million new-in-box items via auctions alone each year, totaling to 1.6 billion dollars annually in auction sales
of new goods.
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literature on competing mechanisms (reviewed in Section 6.3) only generates coexistence of

multiple sales channels when there are exogenous differences among buyers or sellers, or under

knife-edge conditions on parameters. Coexistence occurs for us with ex-ante homogeneity and

under a robust set of parameters, as equilibrium selling speed compensates for difference in

selling price.

Ignoring implications of consumers’ idiosyncratic deadlines can skew the evaluation of

market design and welfare. We demonstrate that, in the presence of deadlines, increases in

platform fees can shift the market to more posted prices and fewer auctions, even if the fee

increase is applied equally to both markets. This provides a possible micro-foundation for the

decline in auction transactions relative to posted prices, particularly since 2009.4 Indeed, the

model predicts that sellers will completely abandon auctions if eBay commission fees rise an

additional three percentage points.

We also show that the existence of the discount channel is always welfare improving when

consumers have deadlines. The first-best solution would have sellers produce and sell the good

to buyers at their deadline; but the presence of search frictions introduces an inefficiency,

requiring sellers to produce well in advance. Auctions help conserve on sellers’ waiting costs

by closing more quickly, leading some sellers to choose auctions, and making the equilibrium

auction usage constrained-efficient. Our model also allows us to quantify dynamic search

frictions: the timing mismatch between the production and the consumption of the good

produces roughly the same welfare cost as the static intermediation cost of bringing buyers

and sellers together.

1 What Are Deadlines?

Before presenting the model, we first provide a discussion of what we mean by consumers

searching with a deadline. A deadline can be a specific event for which a consumer needs a

good, such as an air mattress or extra towels needed for arriving house guests, a birthday

or anniversary gift, new running shoes for aspirational marathon training, a lantern for an

upcoming campout, supplies for hosting a party, equipment for a soon-to-arrive baby, or

supplies for a planned ski or beach trip. In some cases, a deadline could encompass a broader

range than a specific date, as in the case of purchasing new clothes for an imminent change

of season, larger clothes for a rapidly growing child, or a new baking dish for seasonal foods.5

The deadlines we have in mind are inherently idiosyncratic, not deadlines common to a

large group of consumers, such as Christmas or Valentine’s Day. In the presence of such com-

mon deadlines, both demand and supply change simultaneously as the deadline approaches,

4Einav et al. (2018) offered evidence of demand-side (and to a lesser extent, supply-side) shifts affecting the
auction decline prior to 2009.

5All examples in this paragraph come from recent purchases in the household of one of the authors. The
author reports that the marathon did not happen and the baby did arrive.
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making it difficult to isolate the type of consumer behavior we model.6 However, even these

common deadlines may in practice generate the kind of idiosyncratic deadlines we model.

For example, some consumers have idiosyncratic preferences for completing all Christmas

shopping by early December, while others are willing to push the limits of Amazon Prime’s

on-time-delivery promise.

More generally, the deadlines we model represent a limit on how long a consumer is will-

ing to spend procuring a good. For example, searching for a discount could become more

difficult over time if consumers cannot sustain the same level of attention or become increas-

ingly frustrated with repeatedly failing to acquire the item. Alternatively, the consequence

of not winning could deteriorate with time. For instance, consumers could be shopping for a

replacement part (such as an engine timing belt or bicycle tube) that hasn’t yet failed but is

increasingly likely to do so. In fact, while we model consumers as having a hard deadline, it

can be shown that our model is isomorphic to a setting where consumers can search indefi-

nitely but grow more impatient over time at an exogenously increasing discount rate. Despite

the ubiquity of time-sensitive purchases in practice, deadlines have received sparse treatment

in search literature, reviewed in Section 4.2.

To illustrate the prevalence of deadlines in search decisions, we conducted a survey of 1,210

random consumers from the Qualtrics consumer survey participation panel; survey details are

provided in Technical Appendix A; see Coey et al. 2020b for the raw survey data. Each

consumer identified a recent purchase for which she considered checking the price of multiple

sellers. These responses remain stable across a wide price range and variety of product cate-

gories. First, we found that eBay plays a significant role in search: 28% of consumers reported

checking the site as one of their options, compared to 25% searching Google Shopping and

68% searching Amazon.

Second, we asked consumers to indicate when they became aware that they wanted the

item, and how long they would have been content without the item (had they not acquired

it when they did). Only 2.5% of consumers reported unlimited patience; the remaining con-

sumers had a potential search span averaging 70 days.

Third, many of the consumers reported motives that are consistent with the model. For

instance, 32% of consumers needed the item for a specific event or gift, and 65% needed

the item more over the course of their search. For 42% of consumers, the purchase was not

urgent so long as it arrived in time for a particular deadline or use. Indeed, 65% of consumers

indicated that they would have been willing to pay more later if they had been unable to

purchase when they did, consistent with their reservation prices increasing over time.

Of course, many consumer purchases also fall outside the model’s environment. For in-

6This simultaneous shift in supply and demand also occurs in perishable goods markets, as shown for NFL
tickets in Waisman (2018) or in revenue management models (e.g. Deneckere and Peck, 2012; Board and
Skrzypacz, 2016; Mierendorff, 2016; Dilme and Li, 2019), where a seller has multiple units of a good that expire
at a known deadline.
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stance, our model assumes that consumers know the product they want and are only searching

on price, agreeing with half of survey respondents; the other half indicated that some portion

of their search was to determine the right product as well. Also, 46% of consumers reported

wanting the item as soon as possible, yielding a very brief duration of search.

Thus, roughly half to two-thirds of our survey respondents appear to be searching in a

manner consistent with the deadline pressures we model. Of course, these answers rely on the

respondents’ imprecise memory and subjective evaluation of their own intentions, aggregated

across widely varying items. In contrast, our eBay data in Section 4 records actual choices

(bids) made with real consequences (potentially winning and having to pay) in seeking a

homogeneous good. These observed actions in specific eBay markets are strongly consistent

with the motives reported in the broad market surveyed here.

2 Buyers with Deadlines

We begin by modeling buyers’ choices when faced with deadlines. Seller behavior is treated

as exogenous until Section 3. In our continuous-time environment, buyers enter the market at

a constant rate of δ, seeking one unit of the good that is needed within T units of time (i.e.

the deadline).7 The buyer receives βx dollars of utility at the time of purchase, while (1−β)x

dollars of utility are realized at the deadline, which is discounted at rate ρ. Thus, if the good

is purchased with s units of time remaining until the buyer’s deadline, her realized utility is:

u(s) ≡
(
β + (1− β)e−ρs

)
x. (1)

The extreme of β = 0 indicates that the good is literally of no use until the date of

the deadline, so an early purchase provides no additional utility. When β = 1, the buyer

immediately consumes the good when it is purchased, so further search comes at a cost

of delayed consumption. The intermediate case seems reasonable for many deadlines: for

instance, a gift is not needed until the birthday, but the giver may enjoy some peace of mind

from having it secured early. A spare automobile part provides similar insurance even if it is not

literally needed until the failure of the part it replaces. For our empirical estimation, however,

β is not separately identifiable from x because the two parameters always appear multiplied

together in any of our equilibrium conditions. Indeed, on the margin, the equilibrium behavior

reacts the same to greater overall utility x or more immediate consumption β.

The strategic questions for buyers are what price they are willing to bid in the auction

channel and when to purchase from the posted-price channel. Let V (s) denote the net present

7In our model, the event of a consumer entering the market is analogous to the consumer becoming aware
that she needs/wants the good by some future date, and will now keep her eyes open for it as opportunities
to search arrive. Such behavior is consistent with the findings of Blake et al. (2016), who document that
consumers’ web-browsing behavior consists of many searches over many non-consecutive days, well in advance
of when the consumers actually purchase the item.
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expected utility for a buyer with s units of time remaining until her deadline.

A buyer can obtain the good at any time through a non-discount option with posted price

z, receiving utility u(s) − z. If the buyer instead waits until time s = 0 to purchase from

the posted price option, she postpones (and discounts) the same expenditure z, obtaining

a present discounted expected utility (i.e. in time s dollars) of (x − z)e−ρs. We assume

throughout that x ≥ z, so that buyers weakly benefit from purchasing via the posted-price

option.8 We also assume that z > βx, which ensures that (x− z)e−ρs > u(s)− z for all s > 0.

That is, buyers only purchase using the posted price when the deadline arrives, preferring to

exhaust all discount opportunities first. Thus, the expected utility of a buyer who reaches her

deadline is

V (0) = x− z. (2)

Prior to her deadline, the buyer encounters a potential discount opportunity at rate α,

and participates in it with exogenous probability τ , reflecting the possibility that a buyer can

be distracted by other commitments or otherwise find it too much of a hassle to participate.

Here, we treat each discount opportunity as a second-price sealed-bid auction that is executed

immediately.9 The highest bidder pays the second-highest bid and exits with the good, while

losers continue their search. Let W (b) denote the probability of winning with bid b, and M(b)

denote the expected payment under bid b.

A buyer’s expected utility in state s can then be expressed in the following Hamilton-

Jacobi-Bellman (HJB) equation:

ρV (s) = max
b(s)

τα
(
W (b(s)) [u(s)− V (s)]−M(b(s))

)
− V ′(s). (3)

In this continuous-time formulation, the left-hand side of (3) represents the flow of expected

utility that a buyer with s units of time remaining receives each instant while searching. The

right hand side depicts potential changes in (net) utility times the rate at which those changes

occur. When an auction occurs and the buyer participates in it (which occurs at rate of τα),

she will pay M(b(s)) on average. She also wins with probability W (b(s)), gaining consumption

utility u(s) but abandoning further search, which has expected utility V (s). The derivative

term accounts for the steady passage of time: remaining in the market for a unit of time

reduces the buyer’s state s by 1 unit, so her utility changes by −V ′(s).
The total stock of buyers in the market is denoted by H. The number of participants n

in each auction is drawn from a Poisson distribution with mean λ. Indeed, λ ≡ τH because

over one unit of time, an average of ταH buyers participate in an auction while α auctions

8The consumption value x is treated as homogeneous across all buyers—in line with previous work that,
like ours, focuses on commodity-like retail markets (e.g. Einav et al., 2018). Technical Appendix D.3 discusses
ways homogeneity can be relaxed.

9Our empirical estimation approach accounts for the fact, pointed out by Song (2004), that in practice an
eBay bidder may arrive at an auction after the current bid has passed her valuation, and hence she may not
be observed bidding. Endogenous participation decisions are discussed in Technical Appendix D.4
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occur, leading to τH participants per auction. If the cumulative distribution of bids is given

by G(b), then the probability of winning is:

W (b) ≡
∞∑
n=0

e−λλn

n!
G(b)n = e−λ(1−G(b)). (4)

To win the auction, the buyer must have the highest bid, which means all n other participants

must have lower bids.10 This occurs with probability G(b)n. A participant’s expected payment

is the probability of winning times the expected second-highest bid when she wins:

M(b) ≡ e−λR+

∞∑
n=1

e−λλn

n!

∫ b

R
nG(v)n−1vG′(v)dv = e−λR+

∫ b

R
λe−λ(1−G(v))vG′(v)dv. (5)

If there are no other participants (which occurs with probability e−λ), the bidder pays the

reserve price R. Inside the sum we find the probability of facing n opponents, while the

integral computes the expected highest bid among those n opponents.

The first order condition of (3) yields λG′(b(s))e−λ(1−G(b(s))) (u(s)− V (s)− b(s)) = 0, so

the optimal bid is thus:

b(s) = u(s)− V (s). (6)

That is, a buyer in state s has a reservation price equal to the present value of the item minus

the opportunity cost of skipping all future discount opportunities.11

Buyers randomly enter the market at differing times and thus will differ in their remaining

time s, generating a distribution of valuations across buyers at any point in time. Let F (s)

denote the cumulative distribution of buyer types; therefore, G(b(s)) = 1− F (s). We assume

that the reserve price is set to equal the lowest possible bid b(T ) (discussed in Technical

Appendix D.2). Substituting for the optimal bid and the distribution of bidders into the HJB

equation yields

ρV (s) = −V ′(s) + τα

(
e−λF (s) [u(s)− V (s)]− b(T )e−λ −

∫ T

s
b(t)λe−λF (t)F ′(t)dt

)
. (7)

10While the Poisson distribution literally governs the total number of participants per auction, it also de-
scribes the probability that n other bidders will participate. This convenient parallel between the aggregate
distribution (in expected revenue and steady-state conditions) and the distribution faced by the individual (in
her expected utility) is crucial to the tractability of the model but is not merely abuse of notation. Myerson
(1998) demonstrates that in Poisson games, the individual player would assess the distribution of other players
the same as the external game theorist would assess the distribution for the whole game.

11One abstraction in our model is that bidders do not infer any information about their rivals from prior
rounds. This approximates a large market, where the probability of repeat interactions are too low to justify
tracking many opponents. In our data, a bidder has an 8.4% chance of encountering the same opponent in a
subsequent auction.

8



2.1 Steady-State Conditions

In our model, the distribution F (s) of buyer states is endogenously determined by how likely a

bidder is to win and thus exit the market at each state, which itself depends on the distribution

of competitors she faces. We require that this distribution remain constant over time. As

buyers exit the market, they are replaced by new consumers; as one group of buyers get closer

to their deadlines, a proportional group follows behind.

Steady-state requirements are commonly used in equilibrium search models (e.g. Dia-

mond, 1987; Albrecht et al., 2007) and more recently in dynamic auction models (e.g. Zei-

thammer, 2006; Said, 2011; Hendricks and Sorensen, 2018) for tractability, reducing the large

state space that would be needed to track each entry or exit. This does not eliminate all

uncertainty, such as the number or composition of bidders in each auction, but all shocks are

transitory, as bidders in the next auction are independently drawn from a constant (though

endogenous) distribution. Thus, steady-state conditions smooth out the short-run fluctuations

around the average, and capture the long-run average behavior in a market.

Our environment ensures that the cumulative density function F (s) is continuous on [0, T ].

That is, there cannot be a positive mass (an atom) of buyers who share the same state s.12

Conveniently, a continuous distribution also ensures that no two bids will tie with positive

probability. Moreover, the probability density function, F ′(s), must also be continuous on

(0, T ].13 Indeed, the population of buyers changes according to

F ′′(s) = ταF ′(s)W (b(s)) = ταF ′(s)e−τHF (s). (8)

That is, the relative density F ′(s) changes as buyers in state s participate in the discount sales

channel (at a rate of τα) and win (with probability W (b(s))), thereby exiting the market. Of

course, a continuous distribution requires F (0) = 0 and F (T ) = 1.

Finally, we ensure that the total population of buyers remains steady. Because H is the

stock of buyers in the market, HF (s) depicts the mass of buyers with less than s units of time

remaining, and HF ′(s) denotes the average flow of state s buyers over a unit of time. Thus,

we can express the steady-state requirement as

δ = H · F ′(T ). (9)

Recall that buyers exogenously enter the market at a rate of δ new buyers in one unit of time.

12No stock of state 0 buyers can accumulate because all buyers who reach their deadline immediately purchase
from a posted-price listing and exit the market. Similarly, no stock of state T buyers can accumulate because
as soon as they enter the market, their clock begins steadily counting down. For interior states s ∈ (0, T ), exit
can only occur by winning an auction; but the probability of participating in an auction at any given instant
s is 0, thereby preventing a positive mass of buyers from exiting in the same state s.

13This is because buyers in state s become the buyers in state s − ε with the passage of time. Over ε units
of time, they will participate in ταε auctions, but as ε→ 0, the probability that a buyer of type s participates
drops to zero, making it impossible to have a discontinuous drop in buyer density.
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Because all buyers enter the market in state T , this must equal HF ′(T ), the average flow of

state T buyers over one unit of time.

2.2 Buyer Equilibrium

The preceding optimization by buyers constitutes a dynamic game. We define a buyer equi-

librium14 of this game as a bid function b∗ : [0, T ]→ R, a distribution of buyers F ∗ : [0, T ]→
[0, 1], and an average number of buyers H∗ ∈ R+, such that

1. The distribution F ∗ satisfies the steady-state equation (8).

2. The average mass of buyers in the market H∗ satisfies steady-state equation (9).

3. Bids b∗ satisfy equations (2), (6), and (7), taking F ∗ and H∗ as given.

The last condition requires buyers to bid optimally; the first two require that buyers

correctly anticipate the distribution of competitors, consistent with steady state. Indeed,

the equilibrium solution is separable: the first condition uniquely determines F ∗, which then

allows the second to determine H∗, which in turn combines with the third to determine b∗.

We now characterize the unique equilibrium of this game. Our equilibrium requirements

can be translated into two second-order differential equations regarding F (s) and b(s). The

differential equations themselves have a closed-form analytic solution, but one of their bound-

ary conditions does not; rather, the equilibrium H∗ implicitly solves the boundary condition.

If φ(H) is defined as

φ(H) ≡ δ − α
(
1− e−τH

)
− δeτ(H−T(δ+αe−τH)), (10)

then the boundary condition is equivalent to φ(H∗) = 0. This condition ensures that buyers

newly entering the market exactly replace those who exit through winning an auction (the

second term) or purchasing at the posted price (the third term). The solution H∗ is unique

because both terms are increasing in H — more buyers in the market will ensure that more

auctions complete in a sale and that more buyers turn to posted prices. The rest of the

equilibrium solution is expressed in terms of H∗.

First, the distribution of buyers over time remaining until deadline is:

F ∗(s) =
1

τH∗
ln

(
α+ δeτ(H∗+κ(s−T ))

κ

)
, (11)

where κ ≡ δ + αe−τH
∗
.

14We will refer to the augmented equilibrium derived in Section 3, which takes into account sellers’ decisions,
as a market equilibrium.
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Equilibrium bids are expressed as a function of the buyer’s state, s, as follows:

b∗(s) = βx+ (z − βx) ·
(

1− α · τκ (1− eρs) e−ρT + ρ (1− e−τκs) eτκT

τκ (δeτH∗ + αe−ρT ) + ρ (δeτH∗ + αeτκT )

)
· e−ρs. (12)

The next result shows that this proposed solution is both necessary and sufficient to satisfy

the equilibrium requirements.

Proposition 1. Equations (11) and (12), together with φ(H∗) = 0, satisfy equilibrium con-

ditions 1 through 4, and this equilibrium solution is unique.

As previously conjectured, one can readily show that b′(s) < 0; that is, bids increase as

buyers approach their deadline. Moreover, this increase accelerates as the deadline approaches

because b′′(s) > 0. We state both results in the following proposition:

Proposition 2. In equilibrium, b∗(0) = z, b′(s) < 0 and b′′(s) > 0.

Bids increase as s falls for two reasons that can be seen in (12). The last exponential term

e−ρs simply reflects time discounting: buyers offer more because they are closer to enjoying

the full utility of the good at the deadline.15 Yet buyers shade their bid by the fractional

term, which reflects the expected value of remaining search opportunities. As the deadline

approaches, the buyer has fewer chances to win an auction, so the value of search falls and

bidders shade less.

The convexity of bids is a consequence of backloaded search benefits. Buyers are unlikely

to win early in their search due to low bids. Thus the benefit of search is nearly constant early

on, in anticipation of future winning rather than from current winning. Later in their search,

bidders have higher bids, and winning becomes more likely. But as the deadline approaches,

fewer opportunities remain, so the value of search (and shading) quickly evaporates to zero.

Comparative statics for our model allow us to anticipate how the market would evolve if

the underlying structure were to change. For example, if buyers were to become less patient or

more auctions were to be offered, bidders’ bidding profiles over search duration would become

steeper. This would also occur if bidders were given more time to search (increasing T ); this

result is less obvious because if T were to increase there would be more chances to participate

in auctions and also more participants per auction, but the former would always dominate.

Although our equilibrium has no closed-form solution, these comparative statics are obtained

by implicit differentiation, as derived and discussed in Technical Appendix B.

15If buyers are extremely patient (ρ→ 0), the bidding function approaches b(s) = z regardless of time until
deadline—even the fractional term of (12) approaches one. Impatience causes buyers to prefer postponing
payment until closer to the time of consumption, and thereby creates some variation in willingness to pay. If
impatience is eliminated, the variation disappears; everyone is willing to bid full price, so search does not offer
a discount at all, in the spirit of the Diamond (1971) paradox.
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3 Selling to Buyers with Deadlines

The most direct effect of buyer deadlines is seen as reservation prices increase with search

duration. However, this behavior indirectly influences sellers as well; in this section, we

develop the seller’s side of the model and derive its implications for the market as a whole.

This allows us to explain the coexistence of auction and posted-price sellers, predict the market

reaction to increases in seller fees, and evaluate the welfare consequences of offering a discount

selling mechanism.

We consider a continuum of sellers producing an identical good, and allow free entry to offer

their product via either mechanism.16 Each seller has negligible effect on the market, taking

the behavior of other sellers and the distribution and bidding strategy of buyers as given;

yet, collectively, their decisions determine the frequency with which discount opportunities

are available, effectively endogenizing α in the buyers’ model. Since we consider goods that

are readily available at numerous retailers, we take the posted price z to be exogenous, pinned

down by the retail price at outlets outside of our model.

3.1 Seller Profit

Each seller can produce one unit of the good at a marginal cost of c < z, incurred when

the seller enters the market. The seller also pays a listing fee, `, which is a commission on

the transaction price.17 Each seller makes two choices: whether to enter, and upon entry,

whether to join the discount or posted-price market. This choice resembles the tradeoff in

directed search models. Buyers are more plentiful than sellers in the auction market, so sellers

transact quickly, while buyers must wait to find a successful match. The reverse holds true

in the posted-price market; however, the higher transaction price there compensates for the

slower selling speed.

Examining first the posted-price market, let ζ denote the Poisson rate at which a posted-

price seller encounters a customer, so 1/ζ is the average wait of a posted-price seller. Sellers

take ζ as given, but it will be endogenously determined as described in the next subsection.

Once a seller enters the market, the production cost c is sunk; thus the expected profit Πp

moving forward is

ρΠp = ζ ((1− `)z −Πp) . (13)

When sellers encounter a buyer (at rate ζ), the purchase always occurs, with a net gain of

16While we refer to each seller as producing a single unit, one could also think of a seller offering multiple
units so long as the production cost scales proportionately. Also, when sellers employ mixed strategies in our
model, this can be interpreted literally as each seller randomizing which mechanism to use, or as sellers being
divided into two groups playing distinct pure strategies in the proportion dictated by equilibrium.

17In addition to fees paid to the platform itself, this could also include costs of product storage, shipping,
marketing, or customer service. This fee can also be modeled as a flat rate or as a flow of cost for the duration
of the listing. See Coey et al. (2019) for a modification of this model with a flow cost. Also, while the marginal
price z exceeds the marginal cost c, this markup does not contribute to any monopoly-like inefficiency because
all buyers value the good at x ≥ z.
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(1− `)z −Πp after paying the commission.

Turning to the discount market, let η represent the Poisson rate of closing. This is taken

as exogenous, representing a short time (1/η on average) required for buyers to become aware

of the listing. From the seller’s perspective, a Poisson number of buyers (with mean λ) will

participate in her auction at its conclusion, producing expected revenue θ:

θ ≡ 1

1− e−λ

(
λe−λb(T ) +

∞∑
n=2

e−λλn

n!

∫ T

0
b(s)n(n− 1)F (s)(1− F (s))n−2F ′(s)ds

)
. (14)

Inside the parentheses, the first term applies when only one bidder participates (which occurs

with probability λe−λ) and therefore wins at the opening price of b(T ).18 The sum handles

cases when there are n ≥ 2 bidders, with the integral computing the expected bid b(s) of the

second-highest bidder. With probability e−λ, no bidders participate and the item is relisted;

dividing by 1 − e−λ makes θ the expected revenue conditional on sale. From the perspective

of a seller who has just listed an auction, the expected profit Πa moving forward is

ρΠa = η
(

1− e−λ
)

((1− `)θ −Πa) . (15)

The listing closes at Poisson rate η, but if no bidders arrive then the seller re-lists the item

(without incurring production cost c again) and waits for the new auction to close.19 If at

least one bidder participates, the seller’s net gain is (1− `)θ −Πa.

From the perspective of a potential entrant, expected profits are net of the initial produc-

tion cost: Πp − c or Πa − c, respectively. We assume free entry into both markets, ensuring

potential entrants will expect zero profits.

3.2 Steady-State Conditions

At any moment, both markets will have a stock of active listings waiting to close, denoted A

for the measure of auction sellers and P for posted-price sellers. As with the population of

buyers, the stock and flow of sellers are required to remain stable over time.

Each auction closes at rate η, and with A sellers in the market, this implies ηA auctions

will close over a unit of time. From the buyer’s perspective, α auctions close over a unit of

time. These must equate in equilibrium:

ηA = α. (16)

18If the reserve price were endogenous (as explored in Technical Appendix D.2), the seller would accept any
bid greater than cost c, as in Levin and Smith (1994).

19It is possible to omit the waiting time for auction listings, in which case auctions occur instantaneously and
Πa = (1− `)θ. Including η keeps the two seller problems parallel, and accommodates the empirical regularity
that some listings receive no bidders and do not sell.
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Each posted-price listing closes at rate ζ, so collectively the P sellers transact ζP units

in one unit of time. Meanwhile, HF ′(0) buyers reach their deadline and make posted-price

purchases over one unit of time. These must equate in equilibrium:

ζP = HF ′(0). (17)

In aggregate, recall that δ buyers enter (and exit) the market over a unit of time; thus, we

need an identical flow of δ sellers entering per unit of time so as to replenish the δ units sold.

Let σ be the fraction of entering sellers who join the auction market. Then σδ new sellers list

an auction over a unit of time. This must equal the flow of auction sellers who find at least

one bidder over the same unit of time:

σδ = α
(

1− e−λ
)
. (18)

The remaining (1 − σ)δ sellers flow into the posted-price market over a unit of time. This

must equal the flow of purchases made by buyers who hit their deadlines:

(1− σ)δ = HF ′(0). (19)

3.3 Market Equilibrium

With the addition of the seller’s problem, we augment the equilibrium definition with three

conditions. A market equilibrium consists of a buyer equilibrium as well as expected revenue

θ∗ ∈ R+, expected profits Π∗a ∈ R+ and Π∗p ∈ R+, arrival rates α∗ ∈ R+ and ζ∗ ∈ R+, seller

stocks A∗ ∈ R+ and P ∗ ∈ R+, and fraction of sellers who enter the discount sector, σ∗ ∈ [0, 1],

such that:

1. Expected revenue θ∗ is computed from equation (14) using the bidding function b∗(s)

and distribution F ∗(s) derived from the buyer equilibrium, given α∗.

2. α∗, ζ∗, σ∗, A∗, and P ∗ satisfy the Steady-State equations (16) through (19).

3. Prospective entrants earn zero expected profits: Π∗p = c, given ζ∗, and either Π∗a = c if

α∗ > 0, or Π∗a ≤ c if α∗ = 0.

The first requirement imposes that buyers behave optimally as developed in Section 2. The

second imposes the steady-state conditions. The third ensures that sellers enter the market

optimally, since free entry drives expected profits to zero in both markets. If the posted-price

market were to offer positive profits, more sellers would enter, driving up the required time ζ

for each seller to find a buyer, thus reducing expected profits. If auctions were to offer positive

profits, more sellers would enter, increasing the frequency of auctions α. Buyers would then be

more likely to win at a discount, so they would bid less and auction revenues would fall. Sellers
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are thus indifferent about which market they enter, allowing them to randomize according to

the mixed strategy σ.

Note that the posted-price market will always operate in equilibrium. The uncertainty

of winning in the discount market guarantees that a fraction of buyers will inevitably reach

their deadlines. Thus, a sufficiently small stock of posted-price sellers can always break even.

In contrast, a seller in the auction market might face low bids or a low number of bidders,

insufficient to cover costs. If so, the auction market can shut down (α∗ = σ∗ = 0), pushing

all transactions to the posted-price market — referred to as a degenerate equilibrium in the

language of equilibrium search theory.

In more moderate parameterizations, both markets will operate, which can an be called

a dispersed equilibrium, because the homogeneous good is sold at a variety of prices and by

multiple sales mechanisms. Note that buyers are always willing to purchase early if offered

enough of a discount; the dispersed equilibrium occurs only when sellers can still cover their

costs while providing that discount. This can be expressed by simplifying the third equilibrium

requirement to:

(1− `)θ∗ = c

(
1 +

ρ

η (1− e−τH∗)

)
. (20)

Intuitively, free entry requires that the expected post-commission revenue exactly equals the

expected production cost, where the fractional term on the right is the expected interest

incurred between production and transaction. We explore the efficiency of this dispersed

equilibrium in Section 6.5.

While the market equilibrium conditions simplify considerably, they do not admit an an-

alytic solution and we must numerically solve for both α∗ and H∗. All other equilibrium

objects can be expressed in terms of these. Proposition 3 in Technical Appendix C reports

the simplification, while Proposition 4 proves that an equilibrium always exists and reports a

precise condition for when that equilibrium will be degenerate (with α∗ = 0).

4 Empirical Evidence: eBay Auctions and Posted Prices

4.1 Data and Descriptive Statistics

The concept of consumer deadlines and increasing impatience during a consumer’s search is

likely to play out in a number of real-world settings. Among these, the eBay marketplace

offers several advantages. Auctions (serving as the discount mechanism in our model) offer

consumers repeated chances of obtaining the good, while posted-price sales (serving as the non-

discount mechanism) offer consumers an identical good immediately at a higher price. For each

auction we observe failed attempts at acquiring the good, including consumers’ reservation

price at each attempt.20 By considering new-in-box products within a single platform, we

20This feature of our data provides a unique advantage even over the detailed clickstream data studied in De
los Santos et al. (2012) or Blake et al. (2016), for example, where the authors observe a history of a buyer’s
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ensure product consistency across listings and across mechanisms.

Table 1: Descriptive Statistics

A. Transaction level Posted Price Auctions

Mean
Coefficient

of Variation
Mean

Coefficient
of Variation

Number of bidders 1 – 2.56 0.45

Revenue 106.82 0.32 97.27 0.30

Normalized revenue 1 – 0.85 0.30

Number of transactions 494,448 560,858

B. Product level Posted Price Auctions

Mean St. dev. Mean St. dev.

% of listings that transact 49.70 15.98 85.83 12.73

Transactions per product 134.98 220.82 153.11 343.63

Unique sellers per product 82.70 137.84 68.53 201.30

Unique buyers per product 129.03 208.02 334.79 921.59

Number of products 3,663

Notes: Table displays descriptive statistics for our primary data sample: transactions from October 1, 2013

through September 30, 2014 meeting the sample restrictions described in the text. All values are computed

for completed (sold) listings. In panel A, values reported are means of product-level means and means of the

product-level coefficient of variation. Normalized revenue is computed by first dividing auction price by

product-level average of posted-price sales. Panel B reports average and standard deviation of product-level

averages and product-level counts.

Our data consist of auctions and posted-price sales on eBay.com for the year from October

1st, 2013, to September 30th, 2014.21 As our model describes the sale of homogeneous goods,

we restrict attention to brand new items that have been matched by the seller to a product in

one of several commercially available catalogs. These products are narrowly defined, matching

a product available at retail stores, such as: “Microsoft Xbox One, 500 GB Black Console,”

“Chanel No.5 3.4oz, Women’s Eau de Parfum,” and “The Sopranos - The Complete Series

(DVD, 2009).” We refer to an individual attempt to sell the product as a listing. We remove

listings in which multiple quantities were offered for sale; listings with outlier prices (defined

as bids in the top or bottom 1% of bids for auctioned items of that product, and similarly

for posted-price sales); products with under 25 auction or posted-price sales; and products

that went more than 30 days without an auction. The products in our final sample are thus

web-browsing activity, but do not observe the buyer’s reservation price at points during the search process.
21Instructions for accessing this proprietary dataset, Coey et al. (2020a), can be found in the supplemental

material (Coey et al. 2020b).
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popular items, principally electronics, media, or health/beauty products.

For each auction, our data report every bid and its timing. Each bidder has a unique

identifier, allowing us to link a bidder across each auction attempt and observe any eBay

posted-price purchase of the same product. We retain each bidder’s highest bid in each

auction. Each listing’s shipping speed is also recorded, and the associated shipping fees are

added to the posted price or bids throughout our analysis.

For each auction, we follow Bodoh-Creed et al. (2018) by keeping only serious bids, which

include bids that are placed in the final hour of the auction, as well as the two highest bids

prior to the last hour.22 We impose this restriction because we find that, in our data, as in

most eBay auctions, bids placed prior to the last hour of the auction tend to be low (averaging

49% of the good’s winning price) with little or no chance of winning, and seem more like cheap

talk than an informative signal of the bidder’s true reservation price. While our model explains

a number of empirical facts well, it is not well suited for explaining these low-ball bids. This

sample restriction drops 52% of bids in our sample. Importantly, this restriction does not

drop any auctions from our sample.23

Table 1 presents descriptive statistics for the listings that end in a sale. In all, there are

1,055,306 sales of 3,663 distinct products, split roughly evenly between auctions and posted

prices. Panel A aggregates across transactions, then products; that is, we compute the mean

and coefficient of variation across transactions of a given product, then average these results

across all products. In our model, we treat the posted price for a given product as fixed (z in

the model), whereas in reality posted prices can vary from listing to listing just as in auctions.

However, the average selling price is higher with posted prices than auctions ($107 versus

$97) with similar coefficients of variation. To adjust for differences across products, we follow

Einav et al. (2018) and rescale all bids, dividing by the mean price of posted-price sales of that

product. This rescaling is also consistent with our model, in which bids scale multiplicatively

with the posted price. The normalized revenue per auction sale is, on average, 85% of the

posted price, reflecting the fact the auctions serve as a discount sales channel in this market.

Panel B demonstrates that both auctions and posted-price sales contain a large number of

transactions per product, with numerous distinct buyers and sellers involved in transactions

of each product.

4.2 Bids Over Duration of Search

Our data allows us to follow each bidder across multiple auctions of the same product. We

order these auctions in a chronological sequence for each bidder and product pair, ending

when the bidder either wins an auction or does not participate in any more auctions in our

22The two highest bids from prior to the last hour are important only because, given the second-price nature
of eBay auctions, these bids determine the standing bid at the beginning of the last hour.

23Technical Appendix G presents data and model estimates without imposing this sample restriction. We
show that forcing the model to explain these low-ball bids results in an implausibly high discount rate.
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sample. This yields 1,497,371 unique bidding-sequence and product pairs. We then compute

the average of the normalized bids, separately for each sequence length and each step within the

sequence. Our analysis in this section studies the behavior of bidders observed participating

in at least two auctions for a given product (84% of bidders are only observed bidding in one

auction).

We find that the average willingness to pay tends to increase from one auction to the next.

Figure 1 displays the resulting trend across repeated auction attempts. In Panel (A), each

line corresponds to a different sequence length, and each point to the mean normalized bid

for the corresponding auction in the sequence. Due to our normalization, the bids can be

read as a percentage of the item’s retail price. For each sequence length—whether the bidders

participated in only two auctions, three auctions, or as many as six—the average bid steadily

rises over time from the first to the last auction in the sequence.24 Notably, the line for each

sequence is successively higher as the sequence becomes shorter; they never cross. This is

consistent with the model because, in the model, consumers who are observed in fewer total

auctions are closer to their deadlines at the time when they are first observed participating;

thus, their reservation price starts higher and rises more steeply. We find it striking that

this feature is observed in the data as well. Panel (B) frames the trends from Panel (A) in

terms of a regression result. Averaging across all sequence lengths and auction numbers, the

bid increases by a statistically significant amount of 1.2 percentage points in each successive

auction, or 2.9 percentage points from the first to last bid attempt.25

It is worth noting that canonical search models (e.g. Stigler, 1961; Diamond, 1987; Stahl,

1989) do not explain this empirical fact, and yield instead a constant reservation price for

the duration of the search. Indeed, Kohn and Shavell (1974) show this always holds in static

search: that is, when consumers sample from a fixed distribution, face constant search costs,

and have at least one firm left to search.26 In our model, it is the last feature that varies over

the search duration. Buyers always have a chance that the current discount opportunity will

be their last, and this probability rises as they approach their deadline.

While our primary interest is in the implications of deadlines for search more broadly, by

applying our search model to auctions, our work also connects to the nascent literature on

24Note that in these figures the final bid in a sequence may be a winning bid, while by construction previous
bids are not. This is not what drives the increase in bids across auctions, because bids tend to increase even
before the final bid in a sequence. Nor is it due to selection in the product mix across the auction number
variable, as the sequences are constructed at the bidder-by-product level, so conditional on sequence length the
product mix is constant across auction number.

25As highlighted in Section 1, the deadlines we model are inherently idiosyncratic and unobservable, not
common deadlines such as holidays. In our eBay data we found no clear evidence that consumers treat popular
holidays as a common deadline; aggregate price trends exhibit no clear pattern leading up to such holidays. The
average of individual-specific price trends, however, are consistent with the idiosyncratic deadlines we model.

26In the context of job search, Van Den Berg (1990) establishes that reservation wages will fall over the search
spell in anticipation of worsening search costs, match rates, or wage distributions in the future. Aside from
deadlines, other features that can lead to non-stationary search include price-matching guarantees (Janssen and
Parakhonyak, 2013), costs incurred to recall past offers (Janssen and Parakhonyak, 2014), or the possibility
that past quotes will not be honored (Akın and Platt, 2014).
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Figure 1: Bids Over Search Duration — Data
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Notes: In Panel (A), a given line with m points corresponds to bidders who bid in m auctions total for a

given product without winning in the first m− 1 auctions. The horizontal axis represents an auction number

within the sequence (from 1 to m) and the vertical axis represents the average normalized bid. Panel (B)

displays estimated coefficients for dummy variables for each auction number (i.e. where the auction appears

in the sequence) from a regression of normalized bid on these dummies and on dummies for the length of

auction sequence. This regression is performed after removing outliers in the auction number variable

(defined as the largest 1% of observations). 95% confidence intervals are displayed about each coefficient.

repeated sequential auctions (Zeithammer, 2006; Said, 2011; Hendricks et al., 2012; Backus

and Lewis, 2016; Bodoh-Creed et al., 2018; Hendricks and Sorensen, 2018), in which bidders

shade their bids below their valuations due to the continuation value of future search. Among

this literature, our model is unique in its prediction that a bidder will increase her bid in

subsequent attempts to acquire the item.27

We are also able to examine this bid increase for individual products (presented in Technical

Appendix H), rather than averaging across all products. Within broad product categories, the

average bid increase is quite similar to the results presented here, suggesting that deadline-like

behavior may occur across a wide range of consumer goods.28 Of course, many consumers may

have idiosyncratic reasons for purchasing that are not driven by a specific timeline or growing

impatience. Importantly for our empirical analysis, however, the presence of non-deadline-like

behavior will likely work against us finding patterns consistent with the model.

4.3 Winners and Losers

Here we document additional patterns in the data concerning who wins and what losers do.

First, the bidder in an auction with the longest observed time on the market (i.e. the time

27We offer a comparison to other auction models in Technical Appendix F.
28Our survey data discussed in Section 1 also includes a self-reported measure of consumers’ individual

deadlines. We analyze this measure in Technical Appendix A and find evidence of deadlines for a wide variety
of products, with increasing reservation prices as the deadline approaches.
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since the bidder’s first observed bid) is frequently the winner, occurring in 70.6% of auctions.29

This is consistent with the model.30 In contrast, elapsed time and likelihood of winning would

be inversely correlated if valuations were constant over time because high-valuation buyers

would win shortly after entering the market while low-valuation bidders would require many

repeated attempts to get lucky.

Second, when auction losers abandon auctions, we observe 11.3% of them later purchasing

the same product via an eBay posted-price listing. Our model predicts that all losing auction

participants will eventually turn to posted prices; and it is possible that many still do but

through a different platform such as Amazon, or at a brick-and-mortar location. Alternatively,

it is possible that some buyers may only intend to use auctions while others only use posted

prices, which is a decision that our model does not seek to explain.

Regardless, among auction losers who do eventually purchase from an eBay posted-price

listing, nearly all do so within a very short time of their last observed auction attempt: 57%

do so within one day of their last losing attempt, 73% within 5 days, 80% within 10 days, etc.

Indeed, the cumulative probability of switching to a posted-price listing is concave in the time

elapsed since the last losing attempt, as shown in Figure 2.A. This is as the model predicts:

the buyer’s last observed auction attempt should be close to the buyer’s deadline, and thus a

posted-price purchase is most likely to occur close to the last auction attempt.

Third, the data report the time elapsed between a buyer’s bids. We find that the average

duration between bids is shorter for bidders with more bidding attempts. This decrease is

consistent with the model: all buyers have the same available time T , so those fortunate

enough to participate in more auctions must have placed bids closer together. We return to

this point in Section 5.4

4.4 Bidder Learning and Alternative Explanations

Deadlines provide a single explanation for multiple data patterns, one of which is the robust

pattern observed in our data of bidders increasing their bids over time. Another possible

explanation for that particular fact might involve bidder learning.31 Consider the case where

bidders are uncertain about the degree of competition they face, and form different estimates

of its intensity. A bidder who underestimates the number of competitors or the bids of

29This percentage is computed conditional on auctions in which the winner has bid at least once before.
Without this conditioning, the number is similar (70.5%).

30Note that the model does not predict that will occur 100% of the time. The buyer only enters our data
when her first bid is placed, even though she may have started her search earlier. Thus, in both the data and
the model, the bidder with the longest observed time since first bid should frequently (but not always) win.

31We note that learning does not necessarily imply increases in bids across auctions. In Jeitschko (1998),
bidders can learn their opponents types from their bids in the first auction, but in equilibrium, they reach
the same expected price in the second auction. The model in Iyer et al. (2014) generates bids that rise on
average, but there learning occurs only for the auction winner, who needs to experience the good to refine
her information about its value. Learning stories can also generate decreasing reservation prices, as in De los
Santos et al. (2017).
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Figure 2: Switching Rates, Expensive Products, and Experienced Bidders
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(C) Bidders With ≥ 50 Auctions
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(D) Bidders With < 50 Auctions
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Notes: Panel (A) displays cumulative density of the time difference between the last observed auction

attempt and the posted-price purchase conditioning on bidders who attempted an auction and did not win

and were later observed purchasing the good on an eBay posted-price listing. The remaining panels report

average bids over duration of search as in Panel (A) of Figure 1. Panel (B) limits to products with average

transaction price ≥ $100; Panel (C) limits to bidders who have bid in at least 50 auctions; Panel (D) limits to

bidders who bid in less than 50 auctions.
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competitors will overestimate her likelihood of winning in future auctions; this raises her

continuation value and causes her to shade her bid lower. Such a bidder will gradually revise

her estimates upwards as she fails to win auctions, and thus tend to bid more over time.

Bidders who overestimate the amount of competition will bid more aggressively than those

who underestimate. However, their initial aggressive bidding makes them likely to win auctions

early on; they may not remain in the market for long enough to learn their way to lower bids.

Thus, in principle, bidder learning could also explain the pattern of bidders increasing their

bids over time. Lauermann et al. (2017) provide a theory of this form, though in the context

of first-price auctions and without empirical testing; they refer to this pattern of losers raising

their bids due to learning as the loser’s curse. While such learning likely occurs in practice

(and our model abstracts away from it), there are several reasons why bidder learning is

unlikely to be the sole driver of increasing bids in our setting.

First, users can easily learn prices and bid histories for current and past listings by selecting

the “Sold Listings” checkbox on the eBay search results page; this is far quicker and more

informative than auction participation.

Second, learning by participation is more costly with expensive products, due to the danger

of bidding too high and winning when initially uninformed. We therefore expect buyers of

expensive products to be more inclined to gather information before bidding (such as through

searching eBay sold listings) rather than using repeated bid attempts to discover the market

price. Figure 2.B shows the same increasing bid pattern for products with a median price

over $100, although the bid increase across auctions is smaller than in the Figure 1.A (0.5

percentage points on average from auction to auction, and 1.3 percentage points from the

first to last bid).

Third, experienced bidders should have more familiarity with the auction environment

and with alternative means for gathering information, so learning by participation should

not affect them greatly. We define experience as having participated in at least 50 auctions

prior to the current auction (even outside our sample).32 Experienced bidders place 28.6%

of bids in our sample, and we observe a similar (if noisier) pattern of increasing bids among

experienced bidders, shown in panel (C) of Figure 2, and inexperienced bidders, shown in

panel (D). Experienced bidders bid on average 8 percentage points lower than inexperienced

bidders, but the bids increase over nearly the same range of 5 percentage points. Also, 12.0%

of experienced bidders turn to posted prices after abandoning auctions, compared to 11.1% of

the inexperienced.

Fourth, other facts have no clear connection to a bidder learning story. For instance, in

Technical Appendix E, we show that bidders with more attempts gravitate toward auctions

that offer fast shipping and that close soon. While the model does not directly speak to choos-

ing among available auctions, this ancillary evidence is consistent with increasing impatience.

32For each bidder in each auction, our data reports the number of previous auctions the bidder has partici-
pated in, including listings outside of our sample period and for products outside of our sample.
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We wish to emphasize here that we do not attempt to (nor do we believe it would be feasible

to) rule out the possibility of bidder learning; indeed, some degree of bidder learning seems

plausible and intuitive.33 The appeal of our model of time-sensitive buyers is that it provides

a single, unified explanation of a number of facts together, even while alternative explanations

may generate some of the patterns we observe. For example, one alternative explanation for

the increase in bids at the end of bidding sequences in Figure 1.A is that, from one auction

to the next, a bidder’s valuation is determined as an iid random draw, and that the increase

at the end of the sequence is caused by bidders winning and exiting after a positive shock.

However, a story of random valuations would fail to explain the pattern of increasing bids

prior to the final auction in the sequence. While learning and other alternative explanations

likely play some role in this market, the bulk of the evidence also seems to indicate some role

for time sensitivity.

5 Taking the Model to the Data

Here we describe the process of fitting our model to the data and compare the resulting

estimates to facts from the preceding section. The approach is generally straightforward, as

each parameter corresponds directly to a transformation of sample moments. In computing

these moments, we normalize the unit of time to be one month and normalize z = 1. This

latter normalization is done by dividing bids for a given product by the average posted price

for that product. This rescaling is equivalent to “homogenizing” bids (Balat et al., 2016). This

has no effect on the distribution F (s) and or the bids b(s), as bids scale proportionally with

z. We set β = 0 throughout this estimation because it is not separately identifiable from x —

the two parameters always appear multiplied together in any of our equilibrium conditions.

Setting β > 0 would decrease shading in our model, and would only affect our estimation by

increasing ρ and decreasing c.

The first column of Table 2 displays each of the sample moments we exploit. We delib-

erately avoid selecting moments described in Section 4, allowing us to later compare these

observed behaviors to the predictions of the fitted model. The target data moments are

computed as averages across product-level averages; thus, this exercise should be interpreted

as fitting the model for the average product.34 The second column of Table 2 displays the

corresponding theoretical equivalent for each moment, and the third column the resulting

parameter estimates. We discuss each sample moment and estimation step in turn in the

following subsection.

33One might be tempted to test the learning story by looking for positive correlation between the amount by
which a bidder loses an auction and the amount she increases her bid in subsequent auctions. Yet our deadline
model also generates this positive correlation, because low bidders (early in their search) will typically lose by
the largest margins, and these buyers are rarely observed until much later in the search process when their bid
has increased substantially.

34Technical Appendix H applies this same procedure separately product-by-product.
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5.1 Data Moments and Model Equivalents

We now discuss the moments used to identify the parameters. The first parameter in Table 2 is

the number of participants per auction (λ), which plays an outsized role in the model because it

determines the degree of competition among bidders and thus influences the value of searching

in auctions. Our identification of λ explicitly addresses the issue raised by Song (2004): a

participant may arrive at the auction after the standing bid has passed her reservation price

and thus will not be observed placing a bid. Platt (2017) shows that the Poisson mean λ

of the number of bidders arriving at the auction is identified by λP (λ), which is the average

number of observed bidders, where P (λ) is the probability that an arriving participant can

successfully place a bid.35 Thus, each theoretic moment in Table 2 involving the number of

participants is multiplied by P (λ) to state them in terms of observed bidders, as in the data.

Table 2 shows that the second parameter, α, is identified by the frequency with which

auctions occur. Auction frequency is computed conditional on sale in the data; thus, in the

theoretical equivalent, α is multiplied by 1 − e−λ, the probability that the listing receives at

least one bid.36 Note that we also condition on completed auctions in the first moment and

the last three.

The third parameter in Table 2 is τ , which is identified by the frequency with which

a bidder participates in a specific item’s auctions. In our theory, the average bidder will

participate in τα auctions per month, but her bids will only be observed in fraction P (λ) of

them. Furthermore, there will be some data months in which she cannot participate because

she has not entered or has concluded her search. Thus, we measure participation per month,

conditional on being observed in at least one auction that month (in the theoretical equivalent,

the denominator accounts for this same conditioning). Importantly, this moment is the only

one estimated at the bidder level, and thus the fit of the bidder-level patterns we document

below (such as the average bid increase over time) is by no means baked into the model

estimation exercise.

The fourth and fifth parameters in Table 2 are δ and T , which are identified jointly from

a data moment and a steady state condition. The data moment, shown in the fourth row of

Table 2, is the flow of new buyers entering the market for a given item. We compute this

35This probability is given by P (λ) ≡ 1
λ

(
2 (ln(λ)− Γ′(1)− Γ(0, λ))− 1 + e−λ

)
, where −Γ′(1) ≈ 0.57721 is

Euler’s constant and Γ(0, λ) ≡
∫∞
λ

e−t

t
dt is the upper incomplete gamma function. Platt (2017) assumes that

participants in an auction arrive in random order, which is compatible with our model because the payoff of
losing participants is the same whether or not they were able to actually place a losing bid. The assumption
implies that a buyer with low willingness to pay will only be observed if the buyer happens to have arrived
early compared to other bidders in that auction, as in Hendricks and Sorensen (2018).

36In the model, auctions only fail to transact when no one arrives, which happens with 5% probability at our
estimated parameters. In the data, a much larger fraction of auctions (14%) fail to transact—despite having
an average highest bid of 93.7% of the posted price. Some of these fail because eBay allows sellers to impose a
secret reserve price, and it can happen that no bidder bids above this value. In that sense, an auction with a
sufficiently high secret reserve price functions effectively like a posted-price listing, won only on rare occasion
by high-value bidders. Others fail because the transaction is canceled by the buyer or seller. We effectively
exclude all failed auctions from our analysis.
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Table 2: Key Data Moments and Matching Parameter Values

Observed in
Data

Theoretical Equivalent
Fitted

Parameter

Bidders per completed
auction

2.57 λ·P (λ)
1−e−λ

λ = 3.01
(0.020)

Completed auctions per
month

12.76 α
(
1− e−λ

) α = 13.42
(0.548)

Auctions a bidder is ob-
served in per month

1.11 ταP (λ)

1−e−ταP (λ)

τ = 0.019
(0.00066)

New bidders per month
who never win

16.33 (δ − α)(1− e−ταTP (λ))
δ = 41.46

(2.56)

— — Eq. (10)
T = 4.25
(0.142)

Average revenue per
completed auction

0.853 θ
ρ = 0.056
(0.0024)

Average listing fee paid 0.116 `
` = 0.116
(0.0029)

Average duration of an
auction listing (months)

0.156 1/η
η = 6.39
(0.028)

— — Eq. (20)
c = 0.748
(0.0036)

Notes: Table displays the model parameter estimates in the last column, obtained by setting the theoretical equivalent

(second column) equal to the observed value in the data (the first column) and solving for a given parameter. Standard

errors, from 200 bootstrap replications at the product level, are contained in parentheses. Data moments are averaged

for each product (and month, where noted), then averaged across these.

monthly flow conditional on bidders who never win to ensure a complete search spell for these

bidders. The theoretical object we match uses this same conditioning, given by δ−α (the flow

per month of new arrivals minus new winners) multiplied by the probability of being observed

in at least one auction over the full search span (1− eταTP (λ)).

Note that the search span T cannot be directly observed in the data. Instead, we identify

T using the buyer steady state condition (10). In the model, this condition determines the

endogenous number of buyers in the market, H∗, which in turn determines participants per

auction, λ, so as to ensure that buyers win and exit the market at precisely the same rate

that new entrants follow behind them. Our procedure has already identified λ and τ , forcing

H∗ = λ
τ , so we solve for the search span T that is consistent with that population size. Too

small of a value for T , for instance, would leave too few buyers in the market to sustain the
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estimated level λ of per-auction competition.

The sixth parameter in Table 2 is ρ, which is identified from the average second-highest bid

per completed auction (i.e. average auction revenue θ). Note that Eq. (14), which defines θ,

depends only on parameters of the buyer’s problem. A larger discount rate ρ creates a steeper

bid function for each bidder, and thus leads to a lower second-highest bid. This allows us to

identify ρ from the average auction revenue, and thus preserve the average increase between

bids as a check for the goodness of fit.

The seller’s problem requires three additional parameters: listing fees, auction duration,

and production costs, which are the last three parameters shown in Table 2. The first two

are directly observed in the data, providing immediate estimates for ` and η. The seller’s

production cost parameter c is not observable, however. Instead, we identify c as the cost that

makes sellers indifferent between selling via auctions or posted prices, which is the market

equilibrium requirement (20), as shown in the last row of Table 2.

5.2 Discussion of Parameter Estimates

Many of the parameter estimates in the final column of Table 2 seem reasonable (such as

α, λ, δ, η, `), in part because they simply reflect features that are directly observable in

the eBay marketplace. We obtain an estimate of P (λ) = 0.81, so the number of underlying

bidders arriving at the average auction is 23% larger than the number of observed bidders.

Our estimate of τ = 0.019 may seem somewhat low, but this is simply capturing the data

fact that bidders are participating in relatively few of the available auctions. The stock of

buyers in the market is H = 160 under these parameters, while only λ = 3.01 serious bidders

participate per auction. Other parameters, including c, T , and ρ, merit further discussion as

they speak to supply and demand features that relate to other markets.

The estimated production cost c ensures that both mechanisms earn the same expected

profit. Posted-price sellers make a markup of (1 − `)z − c = 13.7%, which seems reasonable

for retail sales. Auction sellers make an average (1 − `)θ − c = 0.7% markup, but with the

resulting ζ = 0.31 (the rate at which a posted-price listing finds a buyer) and η = 6.39 (the

rate at which auctions close), auction transactions occur 21 times faster. Thus, auction sellers

are compensated for the lower markup by selling more quickly.

The estimate of T implies that, for the average product in our sample, consumers become

aware of their need for the product 4.25 months in advance of their private deadline. However,

the model predicts a much shorter observed search. Early in their search, buyer bids are more

often lower than the standing price and thus cannot be placed. As a result, the model predicts

an average search span of 1.6 months from the first to last observed auction. Furthermore,

the model predicts that 77% of auction winners win in the last 2 months of their search span.

These predicted durations are in the ballpark of the average estimated length of time on the

market from our survey (2.3 months), but longer than the observed average time in the market
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in our eBay data (0.4 months).

Our estimate of ρ, a monthly discount rate of 0.056, is clearly higher than implied by a

strict interest-rate interpretation of discount rates. One possible cause of this high estimated

rate is that it may absorb other relevant behavior omitted from the model (as discussed in

Frederick et al., 2002). In the context of our model, for instance, discount rates could be

higher that the pure rate of time preference due to bidders’ risk aversion about future bidding

opportunities, opportunity costs of watching for auction listings, or increasing frustration with

losing auctions, none of which are explicitly addressed in the model.

To see what features of the model and data lead to this high estimate of ρ, note that ρ

is estimated to match the expected revenue per auction between the model and data. An

increase in ρ leads to a bidding profile (the bid at a given point s relative to the deadline)

that is lower and steeper, reducing the average winning price. The estimate of ρ is highly

sensitive to the number of bidders per auction (λ); a decrease in the number of bidders will

automatically lower the expected revenue and (by increasing the value of continued search,

V (s)) will also lower bids. The flow of new bidders (δ) is also of particular importance in

determining ρ. If δ is lower (holding α constant), then a higher fraction of buyers will win an

auction before their deadlines, thereby raising the value of search and lowering bids. Thus, a

lower λ or δ would reduce expected revenue, and in turn reduce the implied discount rate ρ.

In what follows, we simulate from the model using these fitted parameters and compare

simulated outcomes to those in the data. The sample moments we have exploited in estimating

the model parameters do not correspond to the outcomes we explore in the remainder of this

section or in Section 6 below, and thus comparing the patterns observed to those predicted by

the model provides a number of different dimensions on which to judge the model’s goodness

of fit. We will also highlight features of the data that the model does not explain.

5.3 Bids Over Duration of Search: Model Predictions

Figure 3.A provides the same analysis as in Figures 1.A but using data simulated from the

model under the fitted parameters. Again, we see the average bid steadily rises within each

sequence. As highlighted for the data in Section 4.2, the lines in Figure 3.A do not cross.

The data and model patterns certainly do not agree perfectly quantitatively. For example,

the model range in Figure 3.A extends about 8 percentage points lower and 4 percentage

points higher than the data range in Figure 1.A. We also note that the average final bid in

Figure 3.A is incrementally about 0.7 percentage points higher for each longer sequence (of

length 4, 5, or 6), while the last bid of each sequence is 0.5 percentage points lower for each of

the longest sequences in Figure 1.A. At the same time, these longer sequences only constitute

2.6% of the data (per Figure 4.A), so these estimates are less precise.

The underlying bidding strategy (as a function of time remaining) is depicted in the solid

line of Figure 3.B. Initially (for s near T ), the price path is more or less linear, but as the
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Figure 3: Bids Over Search Duration — Model
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Notes: Panel (A) reproduces Figure 1.A from simulated data under the fitted parameters. Likewise, Panel

(B) reports bids (solid line) and utility (dotted line) as a function of time remaining s. Because z = 1, these

may be read as percentages relative to the retail price.

deadline approaches, greater curvature is introduced. On average, a buyer increases her bid

at a rate of 5.5 percentage points per month. Because the average bidder participates in

1.11 auctions per month, this translates to an increase of 5.0 percentage points between each

auction of a given product—which is 4 times larger than the 1.2 percentage point gain seen

in the data (Figure 1.B).

The dotted line in Figure 3.B indicates the utility that the buyer gets by purchasing at

time s (under the fitted parameters); this increases as the deadline approaches purely due

to time preference. The gap between the dashed and solid lines indicates shading relative

to the bidder’s current utility. Note that the gap is essentially constant up until 2 months

before the deadline; this is because, in this early phase of the search, bids are so low that only

11% of bidders win in this phase. In contrast, 36% of bidders win in the last 2 months (or

77% of all auction winners). Over this latter phase, bidding opportunities are running out,

causing the gap to shrink. This is precisely the cause of curvature in the bidding function,

and highlights the fact that the increasing bids pattern predicted by the model is not solely

due to impatience, but also reflects the reduced option value of future auction opportunities.

5.4 Winners and Losers: Model Predictions

As highlighted in Section 4.3, we observe in the data that 70.6% of the time the winner is

the bidder with the longest observed time in the market. Under the fitted parameters, the

model predicts a similar frequency of 73.2%, and this moment is not exploited in fitting the

model’s parameters. In contrast, if elapsed time and likelihood of winning were completely

orthogonal, as assumed in standard models of consumer search, the likelihood of this event
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Figure 4: Repeat Bidding Behavior
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Notes: Panel (A) shows a histogram of the number of bids a buyer places on listings of the same product, for

data (shaded) and model (white). Panel (B) shows the average time between consecutive bids depending on

the total sequence length, for data (solid) and model (dashed).

would be drastically lower, given by 1
λ = 33.2%, because such orthogonality would make each

bidder equally likely to win regardless of her time spent searching so far.

Figure 4.A displays the distribution of the number of auction attempts by bidders in the

model and data. The model somewhat under-predicts the fraction of bidders who are observed

in only one auction (72%, as opposed to 84% in the data) and over-predicts the fraction who

are observed in two auctions (23%, as opposed to 10% in the data).

The data and model match qualitatively in their prediction of the average time between

bids being lower for bidders observed bidding in more auctions, although the scale of the

average time between bids is roughly four times larger in the model than in the data, as

shown in Figure 4.B. This discrepancy is driven by our estimated T and the observed time

in the market it implies (1.6 months) being larger than the observed time in the market in

the data (0.4 months), as discussed in Section 5.2 above. However, the duration between bids

falls at the same rate in the model and the data.

6 Market Implications of Deadlines

The market equilibrium of our model yields three clear predictions, each of which are strongly

evident in the data: discounts should yield sales faster than posted prices, discount and full-

price mechanisms should coexist in the market, and price dispersion should be evident both

within the discount mechanism and between the mechanisms. These results are even more

stark due to our focus on homogeneous products (both in the model and in the data): despite

being a market of identical, new-in-box products, transaction prices vary widely and sellers use
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Figure 5: Sales Rates and Price Dispersion
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Notes: Panel (A) displays the cumulative fraction of listings sold (vertical axis) against the number of days

since the listing was posted (horizontal axis) for auctions and posted-price listings, as observed in the data

and as predicted from the fitted model. Panel (B) plots the density of bids predicted by the fitted model

(bars), observed in the normalized eBay bids (solid line) winsorized at the 5th and 95th percentile, and

observed in residuals after controlling for seller and product fixed effects (dashed line) winsorized at the 1st

and 99th percentile.

multiple sales mechanisms. We then examine how underlying market design changes may have

contributed in part to a recent trend toward more posted-price sales.37 We also discuss market

welfare and quantify dynamic search frictions that are unique to consumers with deadlines.

6.1 Selling Time

As predicted in the model, transactions in our data are typically completed faster through

the discount (auction) mechanism than through posted-price listings. On eBay, the seller

explicitly chooses the auction length for either 1, 3, 5, 7 or 10 days, whereas posted-price

listings are available until a buyer purchases it and can be renewed if not purchased after 30

days. Figure 5.A plots the cumulative fraction of listings sold against the number of days

after listing the item for sale. In the data, auctions (solid line) sell at the same rate as posted

prices (long dash) for the first day, but the posted-price rate slows considerably thereafter.

The model predicts a similar rate for auction sales (dotted) as in the data, which is no

surprise because this moment was used in estimating η. For posted prices (dash dotted), the

model under-predicts the sales rate and shows less curvature than the data.

37Deadlines also have implications for correctly estimating demand. We show in Technical Appendix F that
ignoring deadlines in a static or dynamic model would understate or overstate demand.
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6.2 Price Dispersion

Our data reveal (and our model predicts) three forms of price dispersion over homogeneous

products. The first form is across mechanisms, in that auctions average 15% lower sales prices

than posted-price listings (see Table 1). The second form is dispersion across transaction

prices within the discount mechanism. The distribution of the normalized second-highest

bid across auctions is depicted in Figure 5.B (solid line), which has an interquartile range of

32 percentage points.38 Some of this dispersion is due to low-price items, which show large

variance in their normalized closing prices. Restricting attention to products with a mean

posted price of over $100, there remains a good deal of price dispersion, with an interquartile

range of 20 percentage points. This dispersion remains even after controlling for seller and

product fixed effects in a regression of the normalized second-highest bids; the dashed line in

Figure 5.B reports the distribution of the resulting residuals, which have an interquartile range

of 13 percentage points, or 6 percentage points when restricted to products with a mean posted

price over $100. The third form of price dispersion is that a given individual participating in

the discount sales channel systematically offers higher prices over time, as seen in Section 4.2.

Figure 5.B reports the fitted model’s predicted distribution of auction closing prices (de-

picted with bars). Closing prices are dispersed from 77 to 100% of the posted price. The small

spike at 0.77 arises from auctions in which only one serious bidder participates (predicted to

happen in 15% of auctions), and thus the auction closes at its opening price. While the data

has a wider range of prices than the model, they are in closer agreement when considering

the interquartile range, which is 9.0 percentage points in the model despite the assumption of

homogeneous goods.

Thus, deadlines can be seen as an interesting source of price dispersion. Typically, ho-

mogeneity of buyers and sellers leads to a single (monopoly) price being offered and thus

eliminates the need for search, as shown in the seminal work of Diamond (1971). The equi-

librium search literature has overcome this result by introducing exogenous differences among

buyers’ search costs (e.g. Stahl, 1989) or valuations (e.g. Diamond, 1987). In contrast, our

model delivers pure price dispersion, in the sense that sellers are identical and buyers are

ex-ante identical in their valuation and time to search.39 It is only after randomly arriving to

the market that buyers differ ex-post, leading to a continuum of dispersed prices.40

38Lach (2002) finds levels of dispersion that are nearly this high in grocery commodity prices such as flour
and frozen chicken, with an interquartile range of 15 to 19% of the average price.

39Directed search models (surveyed in Wright et al., 2019) can also generate pure price dispersion if buyers
are indifferent about seeking lower prices but with less chance of success, and similarly for sellers offering higher
prices. Sellers in our setting are likewise indifferent between fast discount sales and slow full-price sales; buyers,
on the other hand, strictly prefer the discount mechanism until their deadline arrives.

40Deadlines had a similar effect for declining reservation wages among unemployed workers in Akın and Platt
(2012); although there, workers passively responded to posted job offers, rather than buyers actively selecting
bid strategies here. Also, labor markets lack the auction mechanism to extract and record reservation wages
throughout a search spell.
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Figure 6: Mechanism Dispersion and Listing Fees
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Notes: The dashed line in Panel (A) is a histogram for the fraction of eBay sales occurring via auction (versus

posted prices) for each of our 3,663 products, while the solid line does the same for the fraction of eBay

bidders who eventually win an auction for that product. White and shaded bars provide the corresponding

model predictions, derived from product-level estimation. The solid line in Panel (B) indicates the fraction of

revenue from auction (as opposed to posted-price) sales over time as reported by Einav et al. (2018). The

dashed line indicates the model prediction of the fraction of revenue from auctions, holding all parameters as

in Table 2 except platform fees (`), which eBay adjusted over time as reported in the dotted line (on the right

axis); see also Table A8.

6.3 Coexistence of Auctions and Posted-Price Sales

In our model, sellers use a mixed strategy, and thus sellers are observed transacting through

both auctions and posted prices. At the estimated parameters, the fraction of sellers who

sell through an auction is σ = 30.8%. In the data, we see that 49.9% of transactions occur

through auctions.41 We also examine the fraction of sales through auctions across our various

products. For this exercise, we estimate the model separately for each product, as described

in Technical Appendix H. Figure 6.A provides a histogram across the products of the fraction

sold by auction in the data (dashed line) and the resulting model estimate (white bars). The

latter distribution is shifted about 20 percentage points lower than the former but has the

same shape. The fraction of auction sales in the model and data varies somewhat across

products; even so, 90% of products in the data have an auction-fraction lying between 29%

and 79%, suggesting that coexistence is widespread.

One possible reason the model under-predicts auction usage is that sellers (and buyers)

may be turning to other posted-price platforms such as Amazon, which we are unable to

41Of course, products are only included in our sample if at least 25 transactions occurred under both mech-
anisms. To document coexistence more broadly, we replicated these results in a larger sample that includes
all products sold at least 50 times in our sample period regardless of listing method. We found very similar
coexistence patterns in that broader data to those described in this section.
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measure in our data. However, our model offers a dual approach to test mechanism dispersion

using only auction data. In equilibrium, the fraction of sellers using auctions, σ, equals the

fraction of buyers who eventually win an auction, (δ −H · F ′(0))/δ, and we can compare this

latter object in the model and data. The caveat is that we only see buyers who register a bid

in the data; for the theoretical equivalent, we divide σ by 1 − e−ταP (λ)T , which is one minus

the probability that a buyer never registers a bid over T periods (due to not encountering an

auction or entering it after the standing price passes her valuation). At our main parameter

estimates, the model predicts that 52.5% of observed bidders will win an auction during their

search span; in our eBay data, we see that 41.6% do. Thus, the model over-predicts auction

winners by roughly 11 percentage points. We compare the distribution of these measures across

products in Figure 6.A, where the shaded bars show a histogram for the model’s prediction

and the solid line shows the same for the data.

While discount and non-discount sales channels frequently offer the same good in practice,

such coexistence is difficult to sustain theoretically: in Wang (1993), Bulow and Klemperer

(1996), Julien et al. (2001), and Einav et al. (2018), one mechanism is strictly preferred over

the other except in “knife-edge” or limiting cases. Models in Caldentey and Vulcano (2007),

Hammond (2013), and Bauner (2015) rely on ex-ante buyer or seller heterogeneity to have

both mechanisms operate simultaneously. In contrast, both mechanisms are active in our

model over a wide range of parameters. This is because our ex-ante identical buyers become

different ex-post as they reach their deadlines. Thus, sellers can obtain a higher price at the

cost of a longer wait, and free entry ensures that these forces offset each other.

6.4 Market Design: Equilibrium Effects of an eBay Listing Fee Change

We now demonstrate that even simple adjustments to the eBay marketplace may have un-

expected consequences when consumers search with a deadline. From 2004 to 2015, eBay

increased its fees almost every year, either by raising its percentage commission or raising its

cap on the commission, as reported in Table A8 of the Technical Appendix. The majority of

fee increases have occurred in final value fees—a percent commission of the final price, in line

with our parameter `.42 In most of these years, the same fee structure applied to auctions

and posted prices, which would seem to make any fee increase neutral across sales channels.

However, in the context of our model, a higher listing fee will incentivize more sellers to choose

to list through the posted-price channel.

The mechanics behind this distortion are as follows. All else equal, a fee increase makes

both channels unprofitable in expectation, but this decrease in expected profits is largest for

auctions, where seller profit margins are always smaller. The equilibrium is restored in the

auction market as sellers offer fewer auctions, which reduces the value from continued search,

V (s), raising equilibrium bids and expected auction revenue. The reduction in the flow of

42Other fees, such as insertion fees shown in Table A8, would be included as up-front costs, c, in our model.
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auctions forces more buyers to use posted-price listings. This shortens the time before a

posted-price listing receives a buyer, restoring profitability for posted-price listings. In the

process, the balance of transactions shifts toward more posted prices.

To quantify the impact of listing fees on auction usage, we evaluate the model predictions

over this time period as ` changes, using the actual eBay fees in different years from Table A8

and holding other model parameters fixed at our main estimates. We show the level of ` in

each year using the dotted line in Figure 6.B (with levels corresponding to the right axis of the

figure) and the model’s predicted share of auction revenue σθ
1−σ+σθ for each year in the dashed

line in Figure 6.B (levels shown on the left axis). For comparison, the solid line in Figure 6.B

shows the auction revenue share in each year over this time frame, which declined by about 53

percentage points from 2004 and 2015.43 Through the lens of our model, fee increases could

explain nearly half of this decline (22 percentage points).

Recent work by Einav et al. (2018) focused on the first half of this period (2003–2009); their

model ascribes the majority of the auction-revenue decline to reduced demand for auctions

and the remainder to changing supply conditions.44 Figure 6.B offers complementary evidence

to their finding: our model suggests that fee increases explain only a small fraction of the

auction decline over this early period. In contrast, fee increases appear as a potentially strong

explanation for nearly all of the auction decline in the post-2009 period. We emphasize here

that our finding is by no means causal evidence, as many other market factors may have

changed over this time period.

In our model, the endogenous parameter σ (the fraction of auctions) falls more quickly as

` rises, and this leads to a nonlinear impact of fee increases on the auction share. For example,

a 1 percentage point commission increase in 2008 decreased the auction share of revenue by

2.5 percentage points; but a similar increase in 2013 had nearly twice the impact because

fees were already high. The model predicts that auctions would be completely eliminated (the

degenerate equilibrium, derived in Proposition 4 in the Technical Appendix) if listing fees were

to reach a level of ` = 14.7%. On the other hand, if listing fees were completely eliminated

(` = 0), auctions would reach maximum usage at 70.0% revenue share.

While the market response to higher listing fees helps explain the declining use of auctions,

it also illustrates a potential hazard of ignoring deadlines in market design. If buyer valuations

in a given transaction are not fundamental but rather are the endogenous results of deeper

factors, even a seemingly neutral change in listing fees (applied to both the auction and posted-

price markets) not only alters which market sellers use, but also warps the distribution of buyer

43The auction revenue share comes from Figure 1 of Einav et al. (2018); see also Figure 1 of Backus et
al. (2018), as well as our Table A8. Note that eBay’s internal categorization of new vs. used items became
available in 2010, so the products underlying the solid line are potentially more heterogeneous (with a mixture
of new and used items) than in our sample. Also, we do not observe the exact timing of fee changes, as our
data on fees comes from historical snapshots of the eBay site.

44The sample that Einav et al. (2018) used to estimate their model lacks some of the data required to
estimate our model (such as repeat bidding), preventing us from estimating our model using their sample, and
our sample lacks some variables required for estimating theirs (such as auction starting prices).
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valuations and changes buyer behavior.

6.5 Welfare Consequences of Deadlines

Our model rationalizes the seemingly redundant coexistence of discount and posted-price

channels when goods, sellers, and buyers are ex-ante homogeneous—an uncommon result, as

noted in Section 6.3. A question that naturally follows is what social value does the discount

mechanism offer? The structure of our model allows us to investigate this question. Note first

that, in our model, all buyers eventually obtain and consume the good, which yields utility

x − z at the deadline. The remaining welfare calculations quantify the additional utility or

costs in this marketplace relative to this utility of x− z.
The first-best outcome in this setting would be for the buyer to produce her own good

at cost c at the time of consumption. This would increase the total welfare x − z by z − c,
or by 25.2% of the retail price under our estimated parameters. However, our environment

necessitates that buyers search for sellers. Total welfare in the market equilibrium is simply the

expected consumer surplus, because sellers earn zero expected profit. A newly-entering buyer

in this market expects utility of V (T ) from the full span of participation in both mechanisms

(measured in terms of dollars, and net of any payments to sellers). If we measure utility

relative to the time of deadline (so as to be comparable to the first-best computation), this

increases total welfare x− z by V (T )eρT − (x− z), or by 2.6% of the retail price in the fitted

model. The gap between first-best (25.2%) and equilibrium welfare (2.6%) reflects additional

costs that sellers incur to connect with buyers, which come in three forms.

First, sellers must pay listing fees to the intermediary, which averages `(σθ+ (1−σ)z) per

buyer, or 11.1% at our estimated parameters. Sellers are willing to pay these fees precisely be-

cause the intermediary connects them with a broad market of buyers, and this intermediation

can be viewed as a variant of traditional search costs.45

Second, sellers must produce the good before it is sold. This reduces total welfare by the

time cost of those resources, computed as the interest accrued during the expected wait for a

buyer: ρc
(

σ
η(1−e−λ)

+ 1−σ
ζ

)
. At our estimated parameters, this equals 9.7% of the retail price,

most of which comes from the lengthy wait endured by posted-price sellers.

Third, even after it is sold in an auction, the buyer waits until the deadline to consume

the good.46 Purchasing the good before it is needed sacrifices the interest she could have had

on her money. This is most easily computed as the residual gap after the other two costs are

deducted, which is 2.0% under our fitted parameters.

These latter two costs are dynamic search frictions, reflecting the opportunity cost of tying

up resources before they are needed for consumption. Note that together, these dynamic costs

45If these fees are merely a transfer between seller and intermediary, they would be included in equilibrium
welfare; otherwise, they reflect real resources that are consumed in creating the platform for buyers and sellers.

46Here, we evaluate this with β = 0. This welfare cost is lessened but not eliminated when some consumption
takes place at the time of purchase, β > 0. Other welfare results are unaffected.
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are slightly larger than the static cost of intermediation. The third friction, where buyers may

purchase earlier than needed, is a cost unique to this deadline setting, and constitutes one

tenth of the total welfare costs.

We note that buyers efficiently sort across mechanisms, because the highest-valuation

buyers go where they will be served immediately, while others wait for auctions. Similar

inter-temporal sorting happens within a posted-price market in Deneckere and Peck (2012);

when supply is insufficient in a period, low-valuation buyers delay their purchase, allowing

high-valuations buyers to consume. The allocation is also efficient within a given auction in

our model, because the highest bidder also has the highest valuation. However, sorting across

auctions is imperfect in our model because of search frictions: buyers can miss an auction

despite having a higher valuation than the winner. Related models of directed search are

frequently constrained efficient, as in Albrecht et al. (2014). They model endogenous entry by

buyers and sellers into a static, one-shot auction, and find that informational rents by buyers

are exactly offset by the negative externality of an additional auction on other sellers, yielding

constrained efficiency. Similar forces are present in our model, but by incorporating buyer

deadlines, our model adds a dynamic component to welfare computations, and it is precisely

the timing mismatch between production and consumption that creates the second and third

welfare costs above.

This mismatch suggests the potential to raise welfare by shutting down the discount market

while still allowing the posted-price market to operate freely. This would seem to have the

virtue of ensuring that all purchases take place at the time of consumption, eliminating the

third inefficiency. However, this shift to all posted-price listings would increase the amount of

platform fees paid to z` = 11.6% instead of 11.1%. The second inefficiency would also increase

(to 13.7%) as sellers who previously used auctions shift to the lengthy posted-price mechanism.

As a result, consumer surplus (and total welfare) is simply x − z; thus, shutting down the

discount market only takes away from total welfare. More generally, it is straightforward to

show that the equilibrium consumer surplus with both markets operating (V (T )eρT ) is always

higher than it would be in a market with only posted prices (x− z).

7 Conclusion

This work examines consumer search in a new light, modeling decisions in a non-stationary

environment where consumers grow less willing to search for a deal the longer they have been

searching. Consumers are time sensitive and have deadlines by which they must obtain the

good, leading to an increasing reservation price as consumers approach their deadlines. The

model also rationalizes the coexistence of discount and full-price sales channels selling the

same item, because transactions occur more quickly in the former but at a lower price.

While the idea that buyers would be willing to pay more as a deadline draws near is

intuitive, it has far-ranging logical consequences: e.g. who wins auctions, how buyers are dis-
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tributed in the market, and which market sellers will enter. In answering these questions, the

model is consistently disciplined with deadlines as the single source of ex-post heterogeneity.

Even with this rigid structure, the model replicates many key features of the observed data,

including moments that were not used in fitting the parameters. By omitting exogenous dif-

ferences that would typically explain the variation across auction outcomes, this setting yields

the cleanest predictions and highlights the mechanisms at work, which would still be at play

even if we were to introduce exogenous differences among discount rates, valuations of goods,

seller costs, etc. See Technical Appendix D for further discussion.

In our empirical application we document a variety of reduced-form findings consistent

with the time sensitivity we model. In particular, buyers offer more and are more likely

to win in each successive attempt to win a discount. These conclusions from observational

eBay data are also consistent with evidence we present from directly surveyed consumers. We

also estimate the model’s parameters and demonstrate that buyer deadlines have implications

for rates of sales, price dispersion, mechanism coexistence, welfare calculations, and market

design.

While our empirical application focused on new, homogeneous goods sold online, the

lessons we learn are equally applicable for impatient repeat buyers on imperfectly interchange-

able items. Indeed, we anticipate similar results for consumer search in the presence of other

sales mechanisms where buyers must make repeated attempts, such as bargaining or shopping

at physical discount outlets: time-sensitive buyers will adjust their strategy as they approach

their deadlines and eventually resign themselves to the posted-price market.
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Appendix: Proofs

Proof of Proposition 1. This differential equation (8) is an application of the Kolmogorov

forward equation (with no stochastic component or time trend), and has the following unique

solution with two constants of integration k and m:

F (s) =
1

τH
ln

(
ατ − eτHk(s+m)

τHk

)
. (21)

The constants are determined by our two boundary conditions. Applying F (T ) = 1, we obtain

m = 1
τHk ln

(
ατ − τHkeτH

)
− T . The other boundary condition, F (0) = 0, requires that k

satisfy:

ατ
(

1− e−τHTk
)
− τHk

(
1− eτH(1−Tk)

)
= 0. (22)

From (9), we know that HF ′(T ) = δ, and using the solution for F in (21), this yields:

k =
δ + αe−τH

H
. (23)

When we substitute for m and k in (21), we obtain the equilibrium solution for F ∗ depicted in

(11). Also, (23) is used to replace k in the boundary condition in (22), we obtain the formula

for φ in (10) which implicitly solves for H∗.

We now show that a solution always exists to φ(H∗) = 0 and is unique. Note that as

H → +∞, φ(H) → −∞. Also, φ(0) = δ
(
1− e−τ(α+δ)T

)
> 0. Because φ is a continuous

function, there exists a H∗ ∈ (0,+∞) such that φ(H∗) = 0.

We next turn to uniqueness. The derivative of φ w.r.t. H is always negative:

φ′(H) = −τ
(
αe−τH + δ(eτH + ατT )e−τ(αe−τH+δ)T

)
< 0.

Thus, as a decreasing function, φ(H), crosses zero only one time, at H∗.

We finally turn to the solution for the bidding function. Again, we start by simplifying the

infinite sums in (4) and (5). The first sum is similar to that in (8). For the second, we first

change the order of operation, to evaluate the sum inside the integral. This is permissible by

the monotone convergence theorem, because F (s) is monotone and
∑ e−λλn

n! b(t)n(1−F (t))n−1

converges uniformly on t ∈ [0, T ]. After evaluating both sums, we obtain:

ρV (s) = −V ′(s) + ατ

(
e−λF (s)

((
β + (1− β)e−ρs

)
x− V (s)

)
− e−λb(T )−

∫ T

s
λe−λF (t)b(t)F ′(t)dt

)
.

Next, by taking the derivative of b(s) = (β + (1− β)e−ρs)x − V (s) in (6), we obtain

b′(s) = −ρ(1− β)xe−ρs−V ′(s). We use these two equations to substitute for V (s) and V ′(s),
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obtaining:

(ρ+ ατe−λF (s))b(s) + b′(s) = ρβx+ ατ

(
e−λb(T ) +

∫ T

s
λe−λF (t)b(t)F ′(t)dt

)
. (24)

This equation holds only if its derivative with respect to s also holds, which is:

(ρ+ ατe−λF (s))b′(s) + b′′(s) = 0. (25)

After substituting for λ = τH and for F (s) solved above, this differential equation has the

following unique solution, with two constants of integration a1 and a2:

b(s) = a1 ·
(
δeτH

∗−τκT

ρ
+
αe−τκs

ρ+ τκ

)
e−sρ + a2. (26)

One constant of integration is pinned down by (24). We substitute for b(s) in (24) using

(26), and solve for a2. This can be done at any s ∈ [0, T ] with equivalent results, but is

least complicated at s = T because the integral disappears: (ρ + ατe−λF (T ))b(T ) + b′(T ) =

ρβx+ ατe−λb(T ). After substituting b(T ), b′(T ), and F (T ), solving for a2 yields:

a2 = βx+ a1
ατκ

ρ (ρ+ τκ)
e−(ρ+τκ)T . (27)

The other constant of integration is determined by boundary condition (2). If we translate

this in terms of b(s) as we did for the interior of the HJB equation, we get b(0) = z. We then

substitute for b(0) using (26) evaluated at 0, and substitute for a2 using (27), then solve for

a1:

a1 =
ρ(z − βx) (ρ+ τκ) eτκT

τκ (δeτH∗ + αe−ρT ) + ρ (δeτH∗ + αeτκT )
.

If the solutions for a1 and a2 are both substituted into (26), one obtains (12) with minor

simplification.

Proof of Proposition 2. Note that eρs and e−τκs both equal 1 at s = 0, causing the frac-

tional term in (12) to become 0 and yielding b(0) = z. The first derivative of b∗(s) is:

b′(s) = −
(z − βx)ρ(ρ+ τκ)

(
δeτH

∗
+ αeτκ(T−s))

τκ (δeτH∗ + αe−ρT ) + ρ (δeτH∗ + αeτκT )
· e−ρs < 0,

where the sign holds because each of the parenthetical terms is strictly positive. The second

derivative is:

b′′(s) =
(z − βx)ρ(ρ+ τκ)

(
ρδeτH

∗
+ (ρ+ τκ)αeτκ(T−s))

τκ (δeτH∗ + αe−ρT ) + ρ (δeτH∗ + αeτκT )
· e−ρs > 0.

Again, each parenthetical term is strictly positive.
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Online Appendix to
“Discounts and Deadlines in Consumer Search”

Dominic Coey Bradley Larsen Brennan C. Platt47

A Survey of Deadlines in Consumer Search

From September 27th to November 1st, 2018, Qualtrics administered a survey on our behalf

to a panel of consumers (see Coey et al. 2020b for the raw survey data). Qualtrics is a

survey administration company that recruits survey participants through a variety of means,

including websites, member referrals, targeted email lists, gaming sites, social media, and

other sources. Panelists are incentivized to complete the survey through some small monetary

compensation or through points toward a particular product loyalty program. These panelists

are thus likely to be comfortable with online activity.

Members of the Qualtrics panel were selected at random to receive an email offering them

the opportunity to participate in our survey. Consumers who opted to start the survey were

given the following screening question to identify participants who could recall an item for

which they had searched:

Can you think of a recent purchase for which you considered searching at multiple locations

(either online or offline) in order to find a good price? Note: Think back only on non-food items.

Examples might include a phone/tablet/laptop (or other consumer electronic item), a toy, an

item of clothing or accessory, a sporting good, a book, an appliance or other household item, or

even a car.

• Yes

• No

Consumers who responded “No” were given no further questions. Consumers who re-

sponded “Yes” entered into our sample and were given the following survey. Respondents

were required to make a response to all questions. Questions 1, 2, 3, 5, and 6 were free-

response questions. Questions 4 and 7 were check-box questions, and the respondents were

allowed to select as many of the options as desired, but were required to select at least one.

Questions 8–12 were radio-button questions, and the respondents were required to select one

and only one option.

1. What was the item you purchased? Describe it in just a few a words.

2. About how much money (in dollars) did you pay for it?

3. About how much money (in dollars) do you think you saved by searching around?

47Coey: Facebook, Core Data Science; coey@fb.com. Larsen: Stanford University, Department of Eco-
nomics and NBER, bjlarsen@stanford.edu. Platt: Brigham Young University, Department of Economics,
brennan platt@byu.edu
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4. Where did you search? Select ALL that apply:

(a) Amazon

(b) eBay

(c) Google

(d) Large retailer’s physical store

(e) Small retailer’s physical store

(f) Other

5. How many times did you visit a physical store in attempting to find the item?

6. How many times did you visit an online retail site in attempting to find the item?

7. Select ALL that apply to the item you purchased: [Respondents were allowed to select as

many of the following as desired, but were required to select at least one.]

(a) The item was a gift for someone

(b) I wanted/needed this item for an upcoming event

(c) I wanted/needed this item more as time went by

(d) I knew where I could find this item for sure at a high price, but I searched around to

find a low price

(e) None of the above

8. Which of the following best describes the urgency with which you wanted/needed the item?

[Respondents were required to select one and only one of the following]

(a) I wanted/needed this item as soon as possible

(b) It wasn’t urgent that I get the item as soon as possible, just as long as it came in time

for a particular deadline or a particular use of the item I had in mind

(c) None of the above

9. If you hadn’t found/purchased the item when you did, which of the following best describes

what you would have done next in your attempt to get it? [Respondents were required to

select one and only one of the following]

(a) Given up searching.

(b) Kept trying to find a good price, and eventually purchased it even if it had cost a little

more than (respondent’s answer to Q.2)

(c) Kept trying to find a good price, and eventually purchased it only if it had cost

(respondent’s answer to Q.2) or less

10. Which response best completes the following sentence? “If I hadn’t purchased this item

when I did, I would have been fine getting this item anytime within the next .”

(a) one day

(b) one week

(c) two weeks

(d) month

(e) two months

(f) four months

(g) six months

(h) one year
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(i) century (in other words, anytime would have been fine — I had no timeline for getting

this item)

11. Which response best completes the following sentence? “I was aware that I wanted/needed

to eventually buy this item about before I purchased it.”

• (Same options as prior question except the last)

12. Select the answer that best describes what you were trying to learn from your search:

(a) I was only trying to find the best price; I knew exactly what item I wanted

(b) I was mainly trying to find the best price, but I was also trying to find which product

was the best fit for me

(c) Price and product fit were equally important to me in my search

(d) I was mainly trying to find which product was the best fit for me, but I was also trying

to find the best price

(e) I was only trying to find which product was the best fit for me, independent of price

(f) None of the above

Qualtrics screens for non-serious responders in several ways. First, the company collects

responses until 50 consumers have completed the survey. The company then computes a speed

threshold (by computing the median time taken on the survey among those first 50 completers,

and setting the threshold to half of that time); any respondent (or subsequent respondent)

who completes the survey faster than that threshold (which in our case is 1.15 minutes) is

not considered a serious respondent. Second, Qualtrics allowed us to examine responses to

identify those in which the free response questions were non-serious (e.g. an answer of 0 for

Q.2; answers such as “I don’t know” or “none” for Q.1; or answers for Q.1 that describe food,

which violates the screening question.).

The survey responses are summarized by price range in Table A1 and by product categories

in Table A2. Categories were determined from respondents’ free-response item descriptions

(Q.1) as follows: Automotive (vehicles and parts), Technology (computers, TVs, phones,

game consoles), Entertainment (video games, books, sports equipment, toys), Household (ap-

pliances, furniture), Clothing (clothes, jewelry), and Other. The responses show remarkable

consistency across the various products and prices. A notable exception is with automotive

purchases, which are much more expensive, are rarely motivated by a special event, are less

likely to be needed more over the search spell, and have more searches occur but at specialized

websites rather than popular consumer websites.

Using the respondents’ estimated savings, we consider whether those who completed their

purchase relatively early in their search span saved more, consistent with our model’s predic-

tion. To account for the wide price range and differing potential search spans, we measure

both variables in percentage rather than absolute terms. Table A3 reports the regression

results. Despite heterogeneous goods and potentially imprecise guesses from respondents on

savings and potential search span, we find a positive correlation between early purchases and

greater savings. The estimate is quite noisy in the first column. The point estimate and its

precision increase as we narrow the sample to those whose reported motives most closely fit
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Table A1: Survey Summary Statistics by Price Range

> $33 &
≤ $33 ≤ $150 > $150 Total

N 416 397 397 1210

Q2 Purchase price (mean) 16 77 2600 884
(sd) 9 35 7213 4299

Q3 % saved (mean) 39 29 22 30

Q10&11 Potential search span (mean) 46 67 99 70
(sd) 66 85 135 101

% of search remaining (mean) 50 49 45 48
Unlimited potential span (%) 3.1 1.8 2.5 2.5

Q5 # of physical searches (mean) 2.4 1.8 2. 2.1

Q6 # of online searches (mean) 3.1 3.8 5.5 4.1

Q4 a. Searched Amazon (%) 74 73 59 69
b. Searched eBay (%) 31 28 25 28
c. Searched Google (%) 24 25 27 25

Q7 a–b: For a special event (%) 36 38 23 32
a–c: Needed more over time (%) 65 66 64 65
d. Knew high-price option (%) 43 47 50 47

Q8 a. Needed ASAP (%) 40 44 53 46
b. Needed by deadline (%) 45 42 38 42

Q9 b. Willing to pay more in (%) 66 63 64 64
future

Q12a a. Only searching on price (%) 52 48 46 49

Notes: Table provides means and standard deviations for a participants’ survey responses. The first column denotes the

question number and, in some cases, the response letter corresponding to the survey questions described in the text of

Technical Appendix A. The second column provides an abbreviated explanation of the survey question. The final

column contains statistics for the full sample. The columns labeled with monetary amounts (e.g. “≤ $33,”) report

statistics for a particular subsample based on the participant’s reported purchase price.
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Table A2: Survey Summary Statistics by Category
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Total
N 52 329 110 210 183 326 1210

Q2 Purchase price (mean) 15,613 398 56 375 63 92 884
(sd) 14,213 476 98 6194 109 455 4,299

Q3 % saved (mean) 14 27 35 29 33 32 30

Q10&11 Potential search span (mean) 122 78 55 91 56 54 70
(sd) 149 117 79 118 72 74 101

% of search remaining (mean) 41 47 50 50 49 48 48
Unlimited potential span (%) 3.8 2.1 3.6 1.9 2.2 2.8 2.5
Span > 20 days (%) 85 74 72 77 78 65 73

Q5 # of physical searches (mean) 2.7 1.8 1.3 1.7 4.1 1.6 2.1

Q6 # of online searches (mean) 6.5 4.5 3.4 4.2 3.4 3.8 4.1

Q4 a. Searched eBay (%) 13 29 37 21 25 33 28
b. Searched Google (%) 7.7 29 27 23 26 25 25
c. Searched Amazon (%) 17 73 84 66 65 71 69

Q7 a–b. For a special event (%) 1.9 30 47 25 43 34 32
a–c. Needed more over time (%) 42 66 65 63 65 67 65
d. Knew high-price option (%) 56 46 45 45 51 45 47

Q8 a. Needed ASAP (%) 54 52 34 44 38 48 46
b. Needed by deadline (%) 35 36 50 40 50 42 42

Q9 b. Willing to pay more in (%) 62 64 57 66 64 66 64
future

Q12 a. Only searching on price (%) 46 46 65 40 50 50 49

Notes: Table provides descriptive statistics for the same survey responses as in Table A1, but broken down by product

category (based on the participants’ responses to survey Q1).
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the model assumptions, such as having several weeks or more to search, or being willing to pay

more over time, or searching purely for the best price rather than across competing products.

Table A3: Dependent Variable: Percentage Savings, Self-Reported

(1) (2) (3) (4)

% Remaining Search Time 1.82 4.66 7.71 13.92
(3.15) (3.65) (4.78) (6.81)

Constant 29.2 28.5 27.1 23.8
(1.61) (1.82) (2.31) (3.22)

N 764 534 347 162

Willing to pay more in future X X X X
Span > 20 days X X X
Exclude clothing and household X X
Only searching on price X

Notes: Table displays results of a regression of the percent saved by the consumer (computed as the response to Q3

divided by the response to Q2) regressed on the percent of search time remaining (computed as number of days

corresponding to the response to Q10 divided by the sum of the days corresponding to Q10 and Q11), with

progressively more restrictive samples used in Columns (1) through (4). Column (1) limits the sample to those

respondents who indicated a willingness to pay more in the future (Q9b); column (2) adds a restriction that search

span be greater than 20 days; column (3) excludes clothing and household items; and column (4) only includes those

participants who were searching only for a good price (Q12a). Robust standard errors are displayed in parentheses.

B Comparative Statics

B.1 Comparative Statics in the Buyer Equilibrium

In this section we discuss comparative statics results for the model parameters. Although our

equilibrium has no closed-form solution, these comparative statics can be obtained by implicit

differentiation of φ(k), which allows for analytic derivations reported below.

Table A4 reports the sign of the derivatives of four key statistics in the buyer equilibrium.

The first and second are the average number of participants per auction, λ∗, which reflects

how competitive the auction is among buyers, and the average mass of buyers in the market,

H∗, which is always proportional to λ∗. Third is the measure of buyers who never win an

auction and must use the posted-price listings; this crucially affects the profitability of the

posted-price market in the market equilibrium. Fourth is the bid of new buyers in the market,

indicating the effect on buyers’ willingness to pay. This comparative static can be derived

at any s and has a consistent effect, but the simplest computation occurs at s = T . This

comparative static also captures price dispersion, both within auctions and between auctions
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Table A4: Comparative Statics on Key Statistics: Buyer Equilibrium

∂/∂α ∂/∂τ ∂/∂ρ ∂/∂β ∂/∂T

Participants per Auction λ∗ – + 0 0 +

Number of Buyers H∗ – + 0 0 +

Measure of Buyers using Posted Price F ′(0) – – 0 0 –

Lowest Bid b∗(T ) – ** – + –

Notes: ∗∗ indicates that the sign depends on parameter values. Sufficient conditions for a positive sign are δτT > 1 and

τ(κ− α) > ρ > τ(2κ− α)
√
τκTe−λ. An exact condition is provided in the proof.

and posted prices. The posted price z is fixed, so a lower b∗(T ) indicates greater dispersion.

Changes in α have an intuitive impact. With more frequent auctions (reduced search

frictions) the value of continued search is greater as there are more opportunities to bid. The

increase in auctions creates more winners, reducing the stock of bidders and the number of

competitors per auction. Both of these effects lead bidders to lower reservation prices.

Changes in τ have nearly the reverse effect from that of α, though there are opposing

forces at work. A higher likelihood of participating also reduces the search friction of a given

bidder, as she will participate in more of the existing auctions. However, all other bidders are

more likely to participate as well. The net result is typically higher bids, because the greater

number of competitors dominates the increased auction participation to reduce the value of

search. However, this does depend on parameter values; in particular, when τ or ρ are very

close to zero, extra participation dominates extra competitors, leading to lower bids.

The rate of time preference has no impact on the number or distribution of bidders, as ρ

does not enter into equation (10) or (11). Intuitively, this is because the rate at which bidders

exit is determined by how often auctions occur, which is exogenous here. Also, who exits

depends on the ordinal ranking of their valuations, which does not change even if the cardinal

values are altered. Their bids react as one would expect: buyers offer less when their utility

from future consumption is valued less. By the same token, a decrease in β has no effect on

the distribution of bidders, but will reduce their bids because more utility from consumption

is delayed until the deadline.

We can also consider the effect (not shown in Table A4) of the parameter change on the

expected revenue generated in an auction. For the first four parameters, revenue moves in the

same direction as bids because the number of participants per auction is either constant or

moves in the same direction. For instance, more auctions will reduce the bids and reduce the

number of bidders; thus expected revenue must be lower. The intriguing exception is when

the deadline is farther away; there, the additional participants override the lower initial bid,

driving up expected revenue.
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Table A5: Comparative Statics on Key Statistics: Market Equilibrium

∂/∂τ ∂/∂ρ ∂/∂T ∂/∂c ∂/∂`

Auction Rate α∗ + – – – –

Participants per Auction λ∗ + + + + +

% Buying via Posted Price F ′(0)H∗

δ – + + + +

Stock of Posted-Price Sellers P ∗ + – – – –

Lowest Bid b∗(T ) – – – + +

Expected Revenue θ∗ + + – + +

Notes: Reported signs are numeric computations under estimated parameters.

B.2 Comparative Statics in the Market Equilibrium

For the market equilibrium, the computation of θ∗ prevents analytic determination of the sign

of the comparative statics, but numeric evaluation remains consistent over a large space of

parameter values. Table A5 summarizes these typical effects. We are particularly interested

in how parameter changes affect the distribution of sellers across mechanisms. We find that

more sellers join the discount market when buyers are more attentive (τ), less patient (ρ), or

have less time (T ). Higher seller costs (whether in listing fee, `, or production, c) also shift

sellers from auctions to posted prices.

To examine the effects in greater depth, first consider an increase in τ . In the buyer

equilibrium, this leads to more participants per auction, who then are willing to bid more.

In the market equilibrium, however, more attentive buyers also induce sellers to offer more

auctions. This more than offsets the effect of more participants per auction, producing a net

decline in bids. On net, however, expected revenue slightly increases.

Next, an increase in ρ reduces bids but had no effect on the distribution of buyers in the

buyer equilibrium. In a market equilibrium, bids will still fall, but sellers offer fewer auctions.

Surprisingly, this leads to higher revenue per auction, as it concentrates more buyers per

auction. Changes in T behave similarly under either equilibrium definition.

For c, it is remarkable that even though increased production costs do not raise the retail

price (by assumption), they still affect auctions in the distribution of buyers and their bids.

Higher costs will shrink the margins in both markets, which the auction market responds

to by reducing its flow of sellers. Fewer auctions necessarily mean that more buyers reach

their deadline; and this increased demand for posted-price listings more than compensates

for the smaller margin. That is, a larger stock of posted-price sellers is needed to return to

normal profits. Also, with fewer available auctions, buyers have a lower continuation value

from waiting for future discount buying opportunities. This drives up bidders’ reservation
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prices, but not enough to prevent a smaller flow of auction sellers. The comparative statics

for listing fees ` behave similarly, as discussed in the Section 6.4 of the text.

B.3 Derivation of Buyer Equilibrium Comparative Statics

Because we do not have a closed-form solution for the endogenous number of participants

per auction, we use implicit differentiation of φ(H∗) = 0 from (10) to determine the effect

of the exogenous parameters on H∗. In fact, we find it convenient to express this implicit

differentiation in terms of the participants per auction, λ∗ ≡ τH∗; so with slight abuse of

notation, we refer to φ(λ) when literally it would be φ(λ/τ). In preparation for implicit

differentiation, we note that φ′(λ) < 0 for all λ:

∂φ

∂λ
= −αe−λ − (τTα+ eλ)δe−τTκ < 0, (28)

where κ ≡ δ + αe−λ is used for notational convenience, though we treat κ as a function of α

and λ when taking derivatives.

Also note that H = λ∗

τ and F ′(0) = κ− α, while the lowest bid is:

b(T ) = ze−ρT · κ (τκ+ ρ) eλ
∗

τκ (δeλ∗ + αe−ρT ) + ρ (δeλ∗ + αeτTκ)
. (29)

Because this is always evaluated at the equilibrium λ∗, we can substitute for eλ
∗

using

φ(λ∗) = 0, which is δeλ = (κ− α)eτTκ, thus obtaining:

b(T ) =
ze−ρT

δ
· (τκ+ ρ) (κ− α)

τ
(
κ− α+ αe−(ρ−τκ)T

)
+ ρ

. (30)

B.3.1 Auction Rate, α

Using implicit differentiation, we compute the effect of α on λ∗.

∂φ

∂α
= −1 + e−λ + τTδe−τTκ (31)

= −1 + e−λ
(

1 +

(
δ + αe−λ − α
δ + αe−λ

)
ln

(
δeλ

δ + αe−λ − α

))
. (32)

The second equality comes from substituting for T using a rearrangement of φ(λ∗) = 0, which

is T = 1
τκ ln

(
δeλ

κ−α

)
.

By rearrangement, ∂φ
∂α ≤ 0 if and only if:

ln

(
δeλ

δ + αe−λ − α

)
−
(
eλ − 1

) δ + αe−λ

δ + αe−λ − α
≤ 0 (33)

As λ −→ 0, the left-hand side approaches 0. If we take the derivative of the left-hand side

52



w.r.t. λ, we obtain:

−
(
eλ − 1

) (
α+ δeλ

) (
2α+ eλ(δ − α)

)
(α+ (δ − α)eλ)

2 (34)

Each parenthetical term is strictly positive for all λ > 0, so the left-hand side of (33) is

strictly decreasing in λ. Thus, (33) strictly holds for any λ > 0, including the equilibrium λ∗.

Therefore, ∂φ
∂α < 0, and ∂λ

∂α = −
(
∂φ
∂α

)
/
(
∂φ
∂λ

)
< 0. Specifically,

∂λ

∂α
= − 1− (1 + τT (κ− α))e−λ

κ− α+ (1 + τT (κ− α))αe−λ
. (35)

Next, consider the impact on the fraction purchasing from posted-price listings, which is

affected both directly by α and indirectly through λ:

∂F ′(0)

∂α
= e−λ − 1 + α · ∂λ

∂α
. (36)

This is strictly negative because e−λ < 1 and ∂λ
∂α < 0.

To demonstrate the effect to α on the bidding function, we use the alternate depiction in

terms of the function g(t):

b(T ) =
g(T )

g(T ) + ρ
∫ T

0 g(t)dt
,

recalling that

g(t) ≡ τe−ρt
(
κ− α

(
1− e−tτκ

))
.

Of course, g(t) is a function of α (including its effect on κ), so let gα(t) denote its derivative

with respect to α. Thus,

gα(t) = τe−ρt

(
e−τκt +

κ
(
1− ατte−τκt

)
α+ (κ− α) (eλ + ατT )

− 1

)
.

When we take the derivative of b(T ) w.r.t. α, we obtain:

∂b(T )

∂α
= zρ

∫ T
0 (g(t)gα(T )− g(T )gα(t)) dt(

g(T ) + ρ
∫ T

0 g(t)dt
)2 .

The denominator is clearly positive. The numerator is always negative; in particular, at each

t ∈ [0, T ], the integrand is negative. This integrand simplifies to:

−
κτ2e−(t+T )(κτ+ρ)

(
α2τ(T − t) + (κ− α)

(
ατ(T − t)eκτT + eλ

(
eκτT − eκtτ

)))
α+ (κ− α) (eλ + ατT )

< 0.

The inequality holds that because T ≥ t and κ > α, making each parenthetical term in the

expression positive.
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B.3.2 Attention, τ

Using implicit differentiation, we compute the effect of τ on λ∗.

∂φ

∂τ
= δκTe−τTκ > 0. (37)

All of these terms are strictly positive. Because ∂φ
∂λ < 0, by implicit differentiation, ∂λ

∂τ =

−
(
∂φ
∂τ

)
/
(
∂φ
∂λ

)
> 0. Specifically,

∂λ

∂τ
=

δκTeλ

αeτTκ + δeλ (eλ + ατT )
. (38)

Next, consider the impact on the fraction purchasing from posted-price listings. The

probability of participation τ has no direct effect on F ′(0), but affects it only through λ:

∂F ′(0)

∂τ
=
∂F ′(0)

∂λ
· ∂λ
∂τ

= −αe−λ · ∂λ
∂τ

(39)

which is always negative.

Finally, consider the effect on the lowest bid. Here, the sign of the derivative will depend on

parameter values, so it is more convenient to take comparatives on (30) rather than examining

it in terms of g(t). Because κ′(τ) = αe−λλ′(τ), the comparative static on b(T ) works out to:

∂b(T )

∂τ
=

zαeλψ

(κ− α)
(
τα+ (τ(κ− α) + ρ)eT (ρ+τκ)

)2
(α+ (κ− α) (ταT + eλ))

. (40)

where

ψ ≡ eλ(κ− α)2

(
ρ(τδT − 1) + δκτ2T − αe−λρ

κ− α

)
+δeλ+ρT

(
ρ
(
eλ(κ− α) + α

)
− T (κτ + ρ)

(
τ(κ− α)2 + κρ

))
.

The lowest bid is increasing in τ if and only if ψ > 0 because the remaining terms in ∂b(T )
∂τ are

always positive.

To verify the sufficient conditions listed under Table A4 in the paper, note that τδT > 1

ensures that the first term in the first line is positive. For the remaining terms of the first line,

note that δκτ2T > κτ by the same assumption. Moreover, because κ > α and 1 > e−λ, then

δκτ2T > ατe−λ. Thus, the sufficient condition τ(κ− α) > ρ ensures that δκτ2T > αe−λρ
κ−α .

For the second line, we note that by omitting the first and last α in the first step, then

applying the second sufficient condition twice in the second, we get:

ρ
(
eλ(κ− α) + α

)
− T (κτ + ρ)

(
τ(κ− α)2 + κρ

)
> ρeλ(κ− α)− T (τκ+ ρ)2 κ
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>
ρ2eλ

τ
− T (τ(2κ− α))2 κ.

The third sufficient condition, ρ > τ(2κ − α)
√
τκTe−λ, ensures that this last term is

positive.

B.3.3 Impatience, ρ

The rate of time preference ρ does not enter into φ, so therefore ∂φ
∂ρ = 0 and ∂λ

∂ρ = 0. Similarly,

ρ has no direct effect on F ′(0) or indirect effect through λ.

To demonstrate the effect to ρ on the bidding function, we use the alternate depiction in

terms of the function g(t):

b(T ) =
g(T )

g(T ) + ρ
∫ T

0 g(t)dt
,

recalling that

g(t) ≡ τe−ρt
(
δ + α

(
e−λ + e−tτ(δ+αe

−λ) − 1
))

.

Of course, g(t) is a function of ρ, so let gρ(t) denote its derivative with respect to ρ. Thus,

gρ(t) = −tτe−ρt
(
δ + α

(
e−λ + e−tτ(δ+αe

−λ) − 1
))

.

Therefore, when we take the derivative of b(T ) w.r.t. ρ, we obtain:

∂b(T )

∂ρ
= z

∫ T
0 (ρg(t)gρ(T )− ρg(T )gρ(t)− g(t)g(T )) dt(

g(T ) + ρ
∫ T

0 g(t)dt
)2 .

The denominator is necessarily positive. We will show that the integrand is negative for all t,

implying that ∂b(T )
∂ρ < 0. The integrand simplifies to:

τ2(ρ(t− T )− 1)

e(t+T )(τ(αe−λ+δ)+ρ)
·
((
α(1− e−λ)− δ

)
eτt(αe

−λ+δ) − α
)
·
((
α(1− e−λ)− δ

)
eτT(αe−λ+δ) − α

)
.

Because t ≤ T , the numerator is always negative, and the exponential term in the denominator

is always positive. Finally, we note that α
(
1− e−λ

)
− δ < 0 because δ − α

(
1− e−λ

)
−

δeλ−τT(δ+αe−λ) = 0 in equilibrium. This ensures that second and third parenthetical terms

are negative.

B.3.4 Immediate Consumption, β

The fraction of immediate consumption has no impact on (10), so λ∗ will not change even if

consumers obtain more utility at the time of purchase. Thus the number and distribution of

buyers in the market are unaffected. The bid function is thus directly impacted as
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∂b(T )

∂β
= x ·

(1− e−ρT )δeλ
∗

(τκ+ ρ) + ρα
(
eτκT − e−ρT

)
τκ (δeλ∗ + αe−ρT ) + ρ (δeλ∗ + αeτκT )

> 0. (41)

The inequality holds because eτκT > 1 > e−ρT .

B.3.5 Deadline, T

Using implicit differentiation, we compute the effect of T on λ∗.

∂φ

∂T
= δκτeλ

∗
e−τTκ, (42)

which is clearly positive. Then by implicit differentiation, ∂λ
∂T = −

(
∂φ
∂T

)
/
(
∂φ
∂λ

)
> 0. Specifi-

cally,
∂λ

∂T
=

δτκ

δ (1 + τTαe−λ∗) + αeτTκ−2λ∗
(43)

Moreover, the number of buyers H∗ is not directly affected by T , so it increases only because

λ∗ increases.

Next, consider the impact on the fraction purchasing from posted-price listings. The

deadline T has no direct effect on F ′(0), but affects it only through λ:

∂F ′(0)

∂T
=
∂F ′(0)

∂λ
· ∂λ
∂T

= −αe−λ · ∂λ
∂T

(44)

which is always negative.

To demonstrate the effect of T on the bidding function, we again use the definition of b(T )

in terms of g(t), but to distinguish between an intermediate time t and the initial time T , we

write it as:

b(T ) =
g(T, T )

g(T, T ) + ρ
∫ T

0 g(t, T )dt
,

where

g(t, T ) ≡ τe−ρt
(
κ− α

(
1− e−tτκ

))
,

where T only affects the expression by changing λ and hence changing κ.

The derivative of b(T ) w.r.t. T is thus:

∂b(T )

∂T
= −

zρ
(∫ T

0

(
g(T,T )2

T − g(t, T )gt(T, T )
)
dt+

∫ T
0

(
g(T, T )gT (t, T )− g(t, T )gT (T, T )

)
dt
)

(
g(T ) + ρ

∫ T
0 g(t)dt

)2 ,

where gt and gT are derivatives with respect to the first and second terms, respectively.

Specifically, these evaluate to:

gt(T, T ) =
(
ρτ(α− κ)− ατ(κτ + ρ)e−τκT

)
e−Tρ
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and

gT (t, T ) = ατ
(
αtτ − eκtτ

)
e−λ−t(κτ+ρ)λ′(T ).

Because κ > α, we know that gt(T, T ) < 0 and g(t, T ) > 0 for all t. Thus, the first integral

in the numerator is always positive.

The integrand of the second integral simplifies to µ(t)α2τ2λ′(T )e−λ−(t+T )(τκ+ρ), where:

µ(t) ≡ eτκt(τT (α− κ)− 1) + eτκT (tτ(κ− α) + 1) + ατ(t− T ).

We have already shown that λ′(T ) > 0; thus, to show that the integral is positive, we only

need to show that µ(t) ≥ 0 for all t. First note that µ(T ) = 0 and µ(0) = eτκT − τκT − 1 > 0.

To see the latter inequality, note that this has the form ex−x−1, which is equal to 0 at x = 0

and has a positive derivative ex − 1 ≥ 0 for all x.

Next, note that µ′′(t) = −(1 + τT (κ − α))τ2κ2eτκt < 0 for all t ∈ [0, T ]. Because µ(0) >

µ(T ) = 0 and µ′′(t) < 0, µ(t) > 0 for all t ∈ [0, T ).

Thus, the integrand of the second integral is always positive. Thus ∂b(T )
∂T < 0.

C Market Equilibrium Model

The equilibrium solution to the market model is presented here, along with the propositions

for the existence of degenerate and dispersed equilibria and their proofs.

C.1 Equilibrium Solution

While the market equilibrium conditions simplify considerably, they do not admit an analytic

solution and we must numerically solve for both α∗ and H∗. Equilibrium is attained when

both (10) and (20) simultaneously hold. To compute θ∗, (14) must be evaluated using b(s)

and F (s) from the buyer equilibrium; the resulting equation is cumbersome and is reported

in the proof of Proposition 3. Once α∗ and H∗ are found, the remaining equilibrium objects

are easily solved as follows:

Π∗a = c (45)

Π∗p = c (46)

A∗ =
α∗

η
(47)

P ∗ =
(z(1− `)− c)

(
δ − α∗

(
1− e−τH∗

))
ρc

(48)

ζ∗ =
ρc

z(1− `)− c
(49)

σ∗ =
α∗
(
1− e−τH∗

)
δ

. (50)
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The following proposition demonstrates that these solutions are necessary for any equilib-

rium in which auctions actually take place.

Proposition 3. A market equilibrium with an active discount channel (α∗ > 0) must satisfy

φ(H∗) = 0, equation (20), equations (11) through (14), and equations (45) through (50).

The solution described in Proposition 3 can be called a dispersed equilibrium, to use the

language of equilibrium search theory, as we observe the homogeneous good being sold at a

variety of prices and by multiple sales mechanisms. By contrast, in a degenerate equilibrium,

the good is always sold at the same price. This only occurs if all goods are purchased via

posted-price listings and no auctions are offered (α∗ = σ∗ = 0). We can analytically solve for

this degenerate equilibrium and for the conditions under which it exists, as described in the

following proposition.48

Proposition 4. The degenerate market equilibrium, described by equations (11) and (12) and

equations (45) through (50) with α∗ = 0 and H∗ = δT , exists if and only if

βx+
(z − βx)τδ

1− e−τδT
· τδ + (ρT (ρ+ τδ)− τδ) e−(ρ+τδ)T

(ρ+ τδ)2
≤ c

1− `
·
(

1 +
ρ

η (1− eτδT )

)
. (51)

Moreover, if this condition fails, a dispersed market equilibrium will exist. Thus, an equilibrium

always exists.

The left side of (51) calculates the expected revenue θ that a seller would earn by offering

an auction when no one else does (α = 0). For this equilibrium to exist, the expected revenue

must be lower than the expected cost of entering the market (the right side of (51)). We can

consider such a deviation because buyers still wait until their deadline before purchasing via

the posted-price listing, and are willing to bid their reservation price b(s) = βx+ (z−βx)e−ρs

if given the chance.

Equation (51) indicates that auctions are not viable when expected costs are high, such as

high production costs or listing fees, or long delays before closing (small η). In contrast, the

posted-price market can compensate for these costs by keeping a low stock of sellers so that

the item is sold very quickly. Auctions can also be undermined by weak competition among

bidders producing low expected revenue, which occurs with a small flow of buyers (δ) or few

of them paying attention (τ).

Proposition 4 proves that an equilibrium always exists; we further conjecture that the

equilibrium is always unique. This claim would require that at most one dispersed equilibrium

48In equilibrium search models, a degenerate equilibrium often exists regardless of parameter values, essen-
tially as a self-fulfilling prophecy. Buyers won’t search if there is only one price offered, and sellers won’t
compete with differing prices if buyers don’t search. Yet in our auction environment, the degenerate equilib-
rium does not always exist. This is because our buyers do not incur any cost to watch for auctions; even if
no auctions are expected, buyers are still passively available should one occur. In that sense, they are always
searching, giving sellers motivation to offer auctions when (51) does not hold.
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can occur, and that a dispersed equilibrium cannot occur when (51) holds — both of which

are true if θ is a decreasing function of α (i.e., more auctions always lead to lower revenue).

The complicated expression for θ in the dispersed equilibrium precludes an analytic proof,

but we have consistently observed this relationship between α and θ in numerous calculations

across a wide variety of parameters.

C.2 Proofs

Proof of Proposition 3. By Proposition 1, equations (11) and (12) and φ(H∗) = 0 must

be satisfied in order to be a buyer equilibrium, as required in the first condition.

The solutions to A∗ and σ∗ are simply restatements of (16) and (18), respectively. It is

apparent that σ∗ ≥ 0. To see that σ∗ < 1, note that the equilibrium condition φ(H∗) = 0

requires that α
(
1− e−τH

)
< δ. This also ensures that P ∗ > 0.

The profits stated in (45) and (46) are required by the third and second equilibrium

conditions, respectively. From (13), profit solves as: Πp = ζz(1−`)
ρ+ζ , so for this to equal c, we

require ζ∗ = ρc
z(1−`)−c as in equation (49). With this, (19) readily yields P ∗ as listed in (48).

The only remaining element regards expected auction profit. Equation (15) solves as:

Πa =
η(1−e−τH)(1−`)θ
η(1−e−τH)+ρ

. By setting this equal to c and solving for θ, we obtain (20).

To evaluate the integrals in (14), we first note that by interchanging the sum and integral

and evaluating the sum, expected revenue simplifies to:

θ =
λ

1− e−λ

(
e−λb(T ) + λ

∫ T

0
b(s)F (s)F ′(s)e−λF (s)ds

)
. (52)

After substituting for b(s) and F (s) from the buyer equilibrium, this evaluates to:

θ = βx+
z − βx

1− e−τH
·

(
1 +

1

(ρ+ κτ) (ρδ + τ(κ− α) (δ + αe−τH−ρT ))
·(

τ(α− κ)e−τH−ρT
(
κτ(κ−Hρ)−Hρ2

)
− δρ(2κτ + ρ)

+κρτ

(
δΨ
(

1− κ

α

)
+ (α− κ)e−τH−ρTΨ

(
1− κeτH

α

))))
,

where κ ≡ δ + αe−τH and Ψ(q) is Gauss’s hypergeometric function with parameters a = 1,

b = −1 − (ρ/τκ), c = −ρ/τκ, evaluated at q. Under these parameters, the hypergeometric

function is equivalent to the integral:

Ψ (q) ≡ −
(

1 +
ρ

τκ

)∫ 1

0

t−2− ρ
τκ

1− qt
dt.

While not analytically solvable for these parameters, Ψ is readily computed numerically.
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Proof of Proposition 4. The proposed Buyer and Market Equilibria still apply when α∗ =

0, bearing in mind that as α → 0, the solution to φ(H∗) = 0 approaches H∗ = δT . In the

absence of auctions, the distribution of bidders is uniformly distributed across [0, T ] because

none of them exit early; so F ∗(s) = s/T and H∗ = δT . Moreover, the buyer’s willingness to

bid (if an auction unexpectedly occurred) reduces to: b(s) = βx+ (z − βx)e−ρs.

For α∗ = 0 to be a market equilibrium, we need Π∗a ≤ Π∗p. To prevent further entry, Π∗p = c

is still required. From (15), a seller would earn Π∗a =
η(1−eτδT )(1−`)θ
ρ+η(1−eτδT )

by offering an auction

unexpectedly. Thus, the expected profit comparison simplifies to: θ ≤ c
1−` ·

(
1 + ρ

η(1−eτδT )

)
.

This is equivalent to (51), where the left-hand side is evaluated from (52):

θ =
τδT

1− e−τδT

(
e−τδT b(T ) +

∫ T

0
b(s)F (s)F ′(s)e−τδTF (s)ds

)
= βx+

τδT

1− e−τδT

(
e−τδT (z − βx)e−ρT +

∫ T

0
(z − βx)e−ρs

s

T 2
e−τδsds

)
= βx+

(z − βx)τδ

1− e−τδT
· τδ + (ρT (ρ+ τδ)− τδ) e−(ρ+τδ)T

(ρ+ τδ)2
.

Thus, if (51) holds, then the profit from offering an auction is never greater than continuing

to offer a posted-price listing, making α∗ = 0 an equilibrium. If (51) fails to hold, then α∗ = 0

cannot be an equilibrium because some firms will earn greater profit by deviating and offering

an auction.

To prove the last claim, first note that in a buyer equilibrium, H → 0 as α → ∞. In

addition, b(s)→ 0 for all s > 0, because auctions occur every instant, in which the buyer faces

no competition. Thus, expected revenue is 0 in the limit, yielding profit Πa < 0 for α → ∞.

At the same time, the violation of (51) is equivalent to Πa > 0 for α = 0. Because expected

revenue is continuous in α, by the intermediate value theorem there must exist an α∗ > 0 such

that Πa(α
∗) = 0, which will constitute a dispersed equilibrium.

D Extensions

D.1 Alternative Mechanisms: Physical Search, Bargaining, or Lotteries

Our model of non-stationary search for discounts can be readily adapted for settings beyond

auctions. Here, we briefly outline several examples of how the search problems could be

formulated, changing the discount mechanism in (3) while maintaining the deadlines embedded

in the −V ′(s) term and the full price option z.

To our knowledge, these non-stationary bargaining and lottery problems have not been

studied before. We believe they present interesting settings for future work.
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D.1.1 Physical Search

First, consider physical search for a homogeneous good where sellers post a price, but discov-

ering these sellers is time consuming. At each encounter, the buyer learns a specific seller’s

price but has to purchase immediately or lose the opportunity. The buyer in state s formulates

a reservation price b(s), purchasing if and only if the quoted price is at or below b(s). Let

G(s) depict the cumulative distribution of sellers offering a price at or above b(s). One could

say that a firm charging b(s) is targeting buyers of type s, and will only sell to those who have

s or less time remaining. In this case, the probability that a buyer “wins” the discount is:

W (s) = 1−G(s), (53)

because the buyer will reject any discount targeted at buyers more desperate than herself.

The expected payment would be:

M(s) =

∫ T

s
b(t)dG(t). (54)

When offered, the buyer accepts any price between b(T ) and b(s), but pays nothing if a higher

price is offered (which occurs with probability G(s)).

We now consider physical search from the seller’s perspective. A deeper discount results

in lower revenue but a higher likelihood of sale because it will be acceptable to more buyers.

A seller who targets buyers with s time remaining will only complete the sale to fraction F (s)

of buyers but will be paid b(s) when the sale is completed. Thus, the discount mechanism

generates an expected profit of:

ρΠa = ηF (s) ((1− `)b(s)−Πa) . (55)

To obtain price dispersion, each targeted price b(s) must yield the same expected profit Πa.

The equilibrium in this environment is closely related to the labor market model of Akın and

Platt (2012).

D.1.2 Bargaining

Alternatively, consider an environment in which buyers are randomly paired with sellers and

enter Nash bargaining. Again, let G(s′) denote the distribution of seller states, where a seller

in state s′ is willing to accept any price at or above b(s′). Upon meeting, their private states

are revealed. Matches with negative surplus are dissolved, while matches with positive surplus

lead to a sale with a price ωb(s) + (1− ω)b(s′), where ω is the Nash bargaining power of the

seller. Here, a buyer in state s will only make a purchase if the seller is willing to accept a
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lower price than b(s), which occurs if s′ > s; so the buyer “wins” the discount with probability:

W (s) = 1−G(s). (56)

The expected payment would be:

M(s) =

∫ T

s

(
ωb(s) + (1− ω)b(s′)

)
dG(s′). (57)

Now consider Nash bargaining from the seller’s perspective. A seller of type s′ would only

find a mutually agreeable price with buyers of type s < s′, which occurs in a random match

with probability F (s′). The exact price ωb(s) + (1−ω)b(s′) depends on the type of the buyer,

so we integrate over all possibilities.

ρΠa(s
′) = η

(
(1− `)

∫ s′

0

(
ωb(s) + (1− ω)b(s′)

)
dF (s)− F (s′)Πa(s

′)

)
. (58)

D.1.3 Lottery

Finally, consider a lottery setting. Here, buyers are occasionally presented with a lottery

as the discount option, with the freedom to buy as many tickets k(s) as desired, with one

being selected at random to win. If the number of lottery tickets purchased by other buyers

collectively are distributed according to G(k′), then the probability of winning would be:

W (s) =

∫ T

0

k(s)

k(s) + k′
dG(k′). (59)

If p denotes the price of one lottery ticket, then the expected payment would be:

M(s) = pk(s). (60)

A seller’s revenue in a lottery setting is simply the number of tickets sold, while the lottery

will result in a winner for sure at its close. The expected profit would then be:

ρΠa = η

(
(1− `)

∫ T

0
pk′dG(k′)−Πa

)
. (61)

D.2 Endogenous Posted Price and Reserve Price

The model assumes that all posted-price sellers charge the same exogenous price z. If the

model were to be expanded to allow each seller to endogenously choose her own posted price,

there would still exist an equilibrium in which all sellers would choose the same z. Specifically,

if buyers anticipate that all sellers charge the same posted price z, they will expend no effort in

searching among available sellers, but will choose one at random. Thus, a seller who deviates
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by posting a lower price does not sell any faster but sacrifices some profit. Moreover, a seller

who deviates by posting a higher price will always be rejected because the buyer anticipates

that another seller can immediately be found who charges price z. Of course, other equilibria

are certainly possible, posing an interesting avenue for future research.

We now relax the assumption that auction sellers always set their reserve price equal to

b(T ), the lowest bid any buyer might make in equilibrium. There is clearly no incentive to

reduce the reserve price below that point: doing so would not bring in any additional bidders,

but would decrease revenue in those instances where only one bidder participates.

Now consider a seller who contemplates raising the reserve price to R > b(T ), taking the

behavior of all others in the market as given. This will only affect the seller if a single bidder

arrives or if the second-highest bid is less than R. With this higher reserve price, the seller

would close the auction without sale in these situations and would re-list the good, a strategy

that has a present expected profit of Πa. Because Πa = c in equilibrium, deviating to the

reserve price R is certain to be unprofitable if R < c. In words, the optimal seller reserve price

should equal the total cost of production. Thus, in our context, b(T ) is the optimal seller

reserve price so long as b∗(T ) ≥ c.
If b∗(T ) < c, then the seller would prefer to set a reserve price of c. One can still analyze

this optimal reserve price in our model by endogenizing the buyer deadline, T . For instance,

suppose that buyers who enter six months before their deadline are only willing to bid below

the cost of production. By raising the reserve price, these bidders are effectively excluded

from all auctions; it is as if they do not exist. They only begin to participate once they reach

time S such that b∗(S) = c. In other words, it is as if all buyers enter the market with S

units of time until their deadline. To express this in terms of our model, we would make T

endogenous, requiring b∗(T ∗) = c in equilibrium. All else would proceed as before.

Even with sellers using optimal reserve prices, the entry and exit of sellers will ensure that

expected profits from entering the market are zero. Any gains from raising the reserve price are

dissipated as more auctions are listed. To consider the absence of this competitive response,

imagine one seller has monopoly control of both markets. The optimal market design for this

monopolist would be to shut down the auction market, forcing all buyers to purchase at the

highest price z. When there are numerous independent sellers, however, they cannot sustain

this degenerate equilibrium (at least when the conditions for degeneracy from Proposition 4

are not satisfied). An individual seller always has an incentive to offer an auction if all other

sellers offer posted-price listings: the product sells faster through auctions, even if at a slightly

lower price.

D.3 Buyer and Seller Heterogeneity

The baseline model assumes ex-ante homogeneity of buyers and sellers. This focus is inten-

tional in order to discipline the model and allow us to isolate the effect of consumer deadlines
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on repeated bidding, price dispersion, and sales channel decisions rather than confounding

these effects with differences among the market participants. However, the model can ac-

commodate certain types of heterogeneity among buyers or sellers with minimal impact on

the overall behavior. For example, some sellers might have stronger preferences than others

for posted-prices over auctions; this would determine which sellers would participate in each

mechanism, though the overall mix would be determined by the marginal seller, as in the

baseline model. The same would occur if some buyers were to have a stronger distaste for

auction participation.

Another potential extension would be to allow buyers to differ in their raw consumption

utility, which is particularly straightforward when β = 0 (all consumption utility is realized

at the deadline).49 Suppose x is a random variable drawn for each buyer, similar to the

exogenously-given valuations in traditional auction models. If x is bounded below by z, all

of the model’s results carry through without modification, as bids are chosen relative to the

posted price (which all bidders have as their common outside option), rather than relative to

their idiosyncratic consumption utility.50

D.4 Endogenous participation

A final group of extensions endogenizes when buyers start or conclude their participation in

the discount mechanism. First, suppose that a buyer incurs some cost while searching for

auctions. This would lead her to postpone her search until closer to her deadline in an effort

to avoid the search cost while the chances of winning are exceptionally low. Relative to our

baseline model, this would be a simple extension that would effectively endogenize T ; buyers

would be aware of their need earlier, but search would really begin only once the expected

utility from search is equal to the cost of search.

Second, consider a case where buyers must also search to find a posted-price listing. This

is in contrast to the baseline model, in which a posted-price option is always readily available.

If such search were required, some buyers would abandon the discount market prior to their

deadline to increase their chances of securing the good in the posted-price market (depending

on the penalty for missing the deadline). This would effectively endogenize participation at

the end of the search spell. This extension, and the costly search extension discussed in the

previous paragraph, would affect when discount search would begin or end (and must be solved

for numerically), but bids would still rise during the search spell and sellers would still find it

profitable to utilize both mechanisms.

An alternative adjustment to participation would be to introduce exogenous heterogeneity

49If β > 0, some of the utility x is immediately obtained on purchase, and becomes relevant in the bidding
function. This disrupts analytic tractability of the equilibrium bidding function, but we have found that numeric
solutions under this extension preserve the same qualitative features as the baseline model.

50The behavior is more nuanced if x can be less than z; in such a setting, some bidders would be worse off
purchasing at the posted price, and extending the model in this case would require specifying the consequences
of missing the deadline.
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in the initial time-until-deadline T or attention given to discount opportunities τ . For the

latter, a buyer might increase her attention τ(s) as her deadline approaches. Unlike the

heterogeneity extensions in the preceding subsection, this type of heterogeneity would disrupt

the analytic tractability of the solution; however, we have found that numerical solutions

under this extension produce similar qualitative results to our baseline model.

At the same time, we note that observed participation already increases over the search

duration in our baseline model, even though attention is assumed to be constant throughout

the search. Song (2004) first noted that a buyer who arrives after the auction’s current

bid exceeds her reservation price will be precluded from submitting a bid and will remain

unobserved. In our empirical application, we account for the feature of our model that buyers

closer to their deadline have higher reservation prices, and increasing reservation prices also

lead to a higher frequency of being observed. We use methods from Platt (2017) to explicitly

account for unobserved participation in the structural estimation of the model, as described

in Section 5.1 of the paper.

E Shipping Speeds and Closing Times

We now present two empirical patterns that provide strong ancillary evidence that buyers grow

more time-sensitive over the duration of their search. First, after repeated losses, buyers are

increasingly likely to participate in auctions where expedited shipping is available, consistent

with the time sensitivity we model. Here we define fast shipping as any shipping option with

guaranteed delivery within 96 hours. The overall fraction of buyers bidding in auctions with

fast shipping available is 44%, and this fraction rises with the number of auctions a buyer has

attempted. This can be seen in Figure A1.A. The horizontal axis indicates the total number

of auctions a bidder participates in, and the vertical axis indicates the fraction of cases where

the last auction the bidder participates in offers fast shipping. We find that those who have

participated in more prior auctions gravitate toward fast shipping (roughly 2% more for each

additional auction).

The choice of which auction to use is beyond the scope of the model, but we would expect

that fast shipping would be most relevant to buyers within a week of their deadline. Of course,

deadlines are not observed in the data, and so Figure A1.A proxies for closeness to the deadline

by how many attempts a bidder has made. To give a sense of the magnitude of the effect,

we use simulated data from the model to determine the relationship between bidder attempts

and closeness to the deadline. This is reported in Figure A1.B, which shows the fraction of

bidders who are in their last week at the time of their last bid.

Note that, in the data, participation in fast-shipping auctions is much more prevalent than

would be suggested by the model if bidders only join such auctions in their last week. Yet

fast-shipping participation still rises 10 percentage points from those who bid once to those

who bid six times. In the model, the fraction who are in their last week grows 19 percentage

65



Figure A1: Shipping Speed

(A) Fraction in Fast Shipping Auction
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Notes: Panel (A) reports the fraction of bidders in the data participating in an auction with fast shipping during the

last bid attempt on a product. Panel (B) reports the fraction of bidders in the simulated data who, at the time of their

last bid attempt, are within a week of their deadline.

points. Thus, the participation in fast shipping rises about as much as the rise in last-week

bidders. We see this as favorable evidence that buyers with longer auction sequences are

feeling greater time pressures, though clearly this is not the only reason they participate in

fast-shipping auctions.

Second, we find that as bidders move farther along in their search process they are in-

creasingly likely to participate in auctions that are ending soon. Our main sample examines

primarily bidders who participate just before the auction closes, so we broaden our analysis

here to include non-serious bids. In this broader sample, a buyer’s highest bid in a given

auction is, on average, placed when there are 1.34 days remaining. Figure A2.A demonstrates

that this number decreases steadily and significantly across auction attempts (with the aver-

age time until the auction closes falling by 2.43% per auction attempt), again consistent with

growing time sensitivity during the search process. Hendricks and Sorensen (2018) report a

similar fact in their data: high-value bidders tend to prefer auctions that end soon. While

this preference toward soon-to-close auctions is not explicitly micro-founded in either model,

deadlines provide one motivation: in the deadlines model, high-value bidders are precisely

those who need the item sooner.

F Consumer Surplus and Demand

Online retail markets are a rich source of data about consumer demand. However, demand

data has wildly different interpretations depending on the model in which it is analyzed. For

example, if consumers grow increasingly time sensitive over the duration of their search, ignor-
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Figure A2: Days Left in Auction Regression (A) and Derived Demand Curve (B)
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Notes: Panel (A) displays estimated coefficients for dummy variables for each auction number (i.e. where the

auction appears in the sequence) from a regression of a dependent variable on these auction number dummies

and on dummies for the length of auction sequence. The dependent variable is the number of days left in the

auction when the bidder bid. Regressions are performed after removing outliers in the auction number

variable (defined as the largest 1% of observations). 95% confidence intervals are displayed about each

coefficient. Panel (B) reports the demand curve inferred from bids reported in Panel (C) of Figure 3 using our

deadlines model (solid) vs. treating the data as though it came from a static model (dotted) or a stationary

dynamic model (dashed). The dashed line is truncated, but would intersect the vertical axis at a price of 1.41.

ing this non-stationarity would lead to mis-measurement of demand and consumer surplus.51

To demonstrate this, we consider two alternatives to our non-stationary dynamic search model:

a static model and a stationary dynamic model. Buyers in the static model only make one

purchase attempt, while the stationary dynamic model allows multiple attempts; but in both,

buyer valuations are exogenously given and constant.

For the static model, assume that the valuation of bidder type s is denoted x(s), which

is a decreasing function of s. Types are independently drawn from an exogenous distribution

F (s). Each bidder has only one opportunity to bid. In such a model, the optimal bid will be

b(s) = x(s), so that bids precisely reveal the underlying utility of bidders.

For the stationary dynamic model, x(s) still denotes the valuation of bidder type s, and

these valuations are persistent throughout their search. Types in a given auction are dis-

tributed by F (s), which could be endogenously determined. Bidders participate in auctions

at rate τα with an average of λ bidders per auction. In this dynamic environment, the con-

51Incorrect estimates of the demand curve could potentially distort calculations needed for profit maximiza-
tion, price discrimination, regulation, and other applications. Moreover, individual-level estimates of willingness
to pay are essential in providing individualized product recommendations, targeted advertising, and personal-
ized pricing. One implication of consumer-specific deadlines is that firms engaged in personalized pricing based
on consumer data (e.g. Kehoe et al. 2018) might benefit by including in their models a measure of a given
consumer’s observed search duration.
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tinuation value of a bidder is:

ρV (s) = τα

(
e−λF (s) (x(s)− V (s))− e−λb(T )−

∫ T

s
λe−λF (t)b(t)F ′(t)dt

)
.

The optimal bid is b(s) = x(s) − V (s); so after substituting this into the HJB equation, it

simplifies to:

x(s) ≡ b(s) +
τα

ρ

(
e−λF (s)b(s)− e−λ

(
b(T ) + eλ

∫ T

s
b(t)λe−λF (t)F ′(t) dt

))
. (62)

In the static model, buyers reveal their valuations in their single truthful bid, so the

econometrician can estimate demand by inverting the empirical CDF of bids. By way of

comparison, if bidding data were generated by our model, but the data is then used to estimate

demand under a static model, we obtain the dotted line in Figure A2.B, in a parametric plot

of (H · F (s), b(s)).

However, in our paper’s environment, the buyer’s value, xe−ρs, is no longer the same as

willingness to pay, b(s) = xe−ρs − V (s). Buyers are truthful about their willingness to pay,

but they they do not bid their full value because tomorrow’s discount opportunities provide

positive expected surplus. When observed bids are adjusted to determine the valuations,52

it generates the true demand curve, depicted as the solid line in Figure A2.B. The static

interpretation of data generated from a dynamic process will underestimate demand — on

average by 1.4% of the retail price.

Of course, other dynamic models (Zeithammer, 2006; Said, 2011; Backus and Lewis, 2016;

Bodoh-Creed et al., 2018; Hendricks and Sorensen, 2018) can make a similar critique because

the option to participate in future discount opportunities reduces buyers’ willingness to bid.

However, these stationary dynamic models predict that the highest-valuation bidders have

the greatest option value from search and thus shade their bids the most aggressively. This is

not true in our model, where the highest-valuation bidders are about to abandon the discount

mechanism and thus do not shade their bids. If bids were generated by deadline-motivated

buyers but interpreted using a stationary dynamic model, it would overstate demand by 27.9%

of the retail price (the dashed line in Figure A2.B). In the stationary model, low-valuation

buyers are unlikely to win in current or future auctions and thus they are willing to pay nearly

their full valuation. Meanwhile, high-valuations buyers are most likely to win in current and

future auctions, so they shade their bids aggressively (by as much as 41%). In our non-

stationary model, however, high-valuation buyers are closer to their deadline and hence shade

less than low-valuation bidders.

52Here, we set x = z, which creates the smallest difference between the static model and ours.
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G Including Non-Serious Bids: Data and Model Results

Our main sample includes bids submitted in the last hour of the auction and the two highest

bids prior to that time (“serious” bids). This screens out extremely low bids that have no

chance of winning and yet are never raised later in that auction.53 Here we repeat the key

analysis from the paper when these non-serious bids are included in the sample.54

In Figure A3, we replicate the data facts reported in Figures 1 and 2 of the paper. In

Table A6, we report the parameter estimates obtained in this expanded sample compared to

the main estimates from the paper. Figure A4 then replicates the comparison of model fit

from the paper on key graphs where they are affected.

We note that including non-serious bids leads to more long sequences; thus we report

sequences of length up to 10. We observe the same pattern of increasing average bids in the

data among all bidders (Figure A3.A and Figure A3.B), those bidding on expensive items

(Figure A3.D), experienced bidders (Figure A3.E), and inexperienced bidders (Figure A3.F).

We also observe line sequences that rarely cross. However, including non-serious bids pulls

down the average bid amount by almost 20 percentage points, leading to a gap between average

bids in the data (in Figure A3.A) and the model equivalent (Figure A4.A), illustrating the

better fit of the serious bids sample. In Figure A4.A, the model prediction shows the longest

sequence line crossing the shorter lines, but this is due the small number of observations in

the simulated data reaching eight auctions (literally only a single bidder participates in eight

auctions in the simulated data). The rate of switching to posted prices (Figure A3.C) is

essentially identical.

Some other comparisons to the data and model are similar even when non-serious bids are

included, such as the distribution of sequence lengths (Figure A4.B) and the duration between

bids (Figure A4.C). We find that, with non-serious bids included, the fitted model predicts

fewer auction sales than are observed in the data, but the fit between the fraction of bidders

who eventually win in the data and model is quite close (Figure A4.D).

Table A6 demonstrates that including non-serious bids has the largest impact in increasing

the number of participants per auction (λ) and the flow of participants entering the market

(δ). Changes in these fitted parameters then lead to slightly shorter implied time frame for

search (T ) than in the main model (decreasing from 4.3 to 2.5 months) and a (unrealistically

large) estimate for the discount factor (ρ), which increases from 0.056 in the paper to 0.380

when non-serious bids are included. The reason the model yields this large estimate for ρ is

as follows: the model rationalizes these extremely low-ball bids by treating these bidders as

53Note that dropping these bids, for the most part, drops particular bidders who do not appear to be ever
bidding seriously. Only 16% of bidders are observed in the data having a serious bid in one auction and a
non-serious bid in another auction. All other bidders place only serious bids or only non-serious bids. This
fact, along with the fact that non-serious bids do not affect final prices, suggests that non-serious bidding is
unlikely to be an important strategic or outcome-driving feature of the marketplace.

54An alternative way to expand the sample would be to lengthen the window for a bid to qualify as serious;
not surprisingly, such an approach yields results a mixture of the paper results and those presented here.
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Figure A3: Data Facts, Including Non-Serious Bids

(A) Bids Over Search Duration (cf. Fig 1.A)
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(B) Regression Results (cf. Fig 1.B)
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(C) Time To Posted-Price Purchase Since Last
Losing Auction (cf. Fig 2.A)
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(D) Bids on Products With Prices ≥ $100 (cf.
Fig 2.B)

.6
4

.6
6

.6
8

.7
.7

2
B

id
, 
%

 o
f 
M

e
a
n
 P

o
s
te

d
 P

ri
c
e

0 2 4 6 8 10
Auction Number

(E) Bidders With ≥ 50 Auctions (cf. Fig 2.C)
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(F) Bidders With < 50 Auctions (cf. Fig 2.D)
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Notes: Figure displays the equivalents of Figures 1 and 2 with non-serious bids included.
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Table A6: Data Moments and Parameter Values, Including Non-Serious Bids

Observed in Data
Theoretical
Equivalent

Fitted Parameter

Paper
With
Non-

Serious
Paper

With
Non-

serious

Bidders per completed
auction

2.57 5.30 λ·P (λ)
1−e−λ

λ = 3.01
(0.020)

13.10
(0.243)

Completed auctions per
month

12.76 α
(
1− e−λ

) α = 13.42
(0.548)

12.76
(0.525)

Auctions a bidder is ob-
served in per month

1.11 1.17 ταP (λ)

1−e−ταP (λ)

τ = 0.019
(0.00066)

0.064
(0.0024)

New bidders per month
who never win

16.33 39.10
(δ − α)·(

1− e−ταTP (λ)
) δ = 41.46

(2.56)
81.55
(3.45)

— — Eq. (10)
T = 4.25
(0.142)

2.54
(0.050)

Average revenue per
completed auction

0.853 θ
ρ = 0.056
(0.0024)

0.380
(0.012)

Average listing fee paid 0.116 `
` = 0.116
(0.0029)

Average duration of an
auction listing (months)

0.156 1/η
η = 6.39
(0.028)

— — Eq. (20)
c = 0.748
(0.0036)

0.712
(0.0038)

Notes: Table displays the equivalent of Table 2 with non-serious bids included in the data sample moments.
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Figure A4: Model Fit, Including Non-Serious Bids

(A) Bids over Search Duration (cf. Fig 3.A)
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(B) Distribution of sequence lengths (cf. Fig
4.A)
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(C) Duration between bids, by sequence length
(cf. Fig 4.B)
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(D) Distribution of Fraction of Sales by Auction
(cf. Fig 6.A)
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Notes: Figure displays the equivalents of Figures 3.A, Figure 4.A–B, and Figure 6.A with non-serious bids included in

the data sample moments and with the model-fitting exercise performed using this expanded sample.
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agents who will eventually be willing to pay the full price upon reaching their deadline, thus

interrupting the large fraction of non-serious bids as though they (and all bids) must have

been generated by agents who steeply discount the future.

H Differences Across Products in Behavior and Parameter Es-

timates

Not surprisingly, behavior in our data varies across products. We illustrate this here by

examining the amount of repeat bidding and the rate of bid increase. For the average product,

repeat bidders place 23% of bids, with an interquartile range of 15 percentage points across

all products. The highest rates of repeat bidding occur with Computers/Tablets (26.3%) and

DVDs/Movies (25.0%). We note that items with higher rates of repeat bidding typically have

lower estimates for T . The rate of bid increase also varies across products. For the average

product, bidders raise their bid on average by 1.9% per observed attempt, with an interquartile

range of 2.5 percentage points. This rate is nearly the same across the major categories with

the exception of Video Games (4.9%).

We now explore estimation of the model’s parameters separately for each product. The

estimates presented in the paper (with the exception of Figure 6.B) uses aggregate data

moments, aggregated across all products, yielding a fit that is representative of the average

product in the market. Here, instead, we estimate the model’s parameters product-by-product,

matching the data moments for a given product to the theoretical moment to obtain product-

specific parameter estimates.

Table A7 summarizes the mean, standard deviation, and median of these product-level

parameter estimates. The first column in Table A7 displays our main estimates for comparison.

For the parameters λ, α, δ, η, ` and c, the mean product-level estimates are nearly the same

as the main estimates. In contrast, the average τ , ρ, and T are somewhat larger. For these

three parameters, the median products estimates are smaller (and, for τ and T , are in closer

agreement to our main estimates). A few factors contribute to the distinctions between our

main estimates and these product-by-product estimates.

First, some targeted moments are not normally distributed across products. For instance,

the monthly flow of new buyers is highly skewed, with 75% of the products below the mean of

16, while the top 1% of products reach into triple digits. Attempted auctions per month are

similarly skewed, though to a lesser degree. Second, the estimation procedure tends to add or

exacerbate skewness in λ, due to the non-linearity of P (λ).

Together, these factors lead to disproportionately skewed product-level estimated parame-

ters. The aggregated targets are necessarily kept away from extremes, but any given product

target could be an extreme, and such outliers have a large influence on the average of the

product-level parameters. This skewness also explains why the median estimates are in closer
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Table A7: Comparison of Parameter Estimates

Product-Level Parameter Estimates

Main Parameter Estimates Mean Median Std. Dev. Coeff. Var.

λ 3.01 3.13 3.04 1.29 0.41

α 13.42 13.33 7.57 29.24 2.19

τ 0.019 0.033 0.021 0.038 1.15

δ 41.46 41.23 22.26 127.94 3.10

T 4.25 7.68 5.42 7.29 0.95

ρ 0.056 0.064 0.040 0.088 1.36

η 6.39 6.91 6.24 2.46 0.36

` 0.12 0.11 0.10 0.17 1.48

c 0.75 0.73 0.76 0.14 0.19

Notes: Main parameter estimates come from Table 2 (which were estimated by fitting model moments to the average of

product-level averages of data moments). The mean, median, and standard deviation columns display the mean, median,

and standard deviation across products of parameters estimated separately for each product. Coefficient of variation

displays the standard deviation over the mean.

agreement for some parameters.

We also note that 11% of individual products cannot fit the model under any parameters.

Most of these misfits are due to cases where the average auction revenue is greater than the

average posted price, which our model cannot rationalize. However, for about 2% of products,

the lack of a solution is because bidders on those products are never observed bidding in more

than one auction (which is the data moment used to identify τ).

While our data permits us to classify equivalent products together through an anonymized

product id, it does not allow us to see what the product actually is. For example, we cannot

tell whether a given product id corresponds to an X-box or a PlayStation. This limits our

ability to consider whether particular parameters seem appropriate for a specific product.

However, we can analyze heterogeneity using a broad category identifier and the average price

level of the product.

In Figure A5, we show how estimates for T , ρ, and c vary across these classifications and

within them. We focus on these three parameters because they are easily interpretable even

beyond the eBay context (unlike, for example, λ). The box indicates the 25th, 50th, and 75th

percentiles for products within a given classification, while the whiskers extend to the 5th and

95th percentile. The categories we display include at least 100 products from our sample,

while the price ranges split our products into roughly four quartiles.

While some groups of products have systematically higher T (in the first row), such as toys

or items under $12, the variation within each group is very large, with overlapping confidence
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intervals for all groups. Similarly, estimates for ρ (in the second row) can be high for categories

such as health, but all confidence intervals overlap. For the estimates of c (in the third row),

note that a lower estimated cost c is equivalent to a higher percentage markup. We find

that this markup appears to be higher among toys, movies, and health products, as well as

lower-priced items.
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Figure A5: Distribution of Product-Level Estimates

(A) Estimated T by Category
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(C) Estimated ρ by Category
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(E) Estimated c by Category
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Notes: Panels (A), (C), and (E) display model parameters estimated separately product-by-product and then aggregated

by product category for each category containing at least 100 products. In each panel, boxes indicate the 25th, 50th, and

75th percentiles of the parameter estimate for products within a given category, while the whiskers extend to the 5th

and 95th percentile. For categories with large values for the 95th percentile, the value of the 95th percentile is shown in

red type. Panels (B), (D), and (F) display similar results but aggregated by average posted price level of each product

rather than by product category. Panels (A) and (B) display estimates of T , panels (C) and (D) display estimates of ρ,

and panels (E) and (F) display estimates of c.
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Table A8: eBay Fees Over Time

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0.01-0.99 $0.30 $0.25 $0.20 $0.20 $0.15 $0.15 $0.10 $0.10 $0.10 $0.30 $0.30 $0.30 
1.00-9.99 $0.35 $0.35 $0.35 $0.35 $0.35 $0.35 $0.25 $0.25 $0.25 $0.30 $0.30 $0.30 

10.00-24.99 $0.60 $0.60 $0.60 $0.60 $0.55 $0.55 $0.50 $0.50 $0.50 $0.30 $0.30 $0.30 
25.00-49.99 $1.20 $1.20 $1.20 $1.20 $1.00 $1.00 $0.75 $0.75 $0.75 $0.30 $0.30 $0.30 

50.00-199.99 $2.40 $2.40 $2.40 $2.40 $2.00 $2.00 $1.00 $1.00 $1.00 $0.30 $0.30 $0.30 
200.00-499.99 $3.60 $3.60 $3.60 $3.60 $3.00 $3.00 $2.00 $2.00 $2.00 $0.30 $0.30 $0.30 

500.00+ $4.80 $4.80 $4.80 $4.80 $4.00 $4.00 $2.00 $2.00 $2.00 $0.30 $0.30 $0.30 
0.01-25.00 5.25 5.25 5.25 5.25 8.75 8.75 9.00 9.00 9.00 10.00 10.00 10.00

25.01-1000.00 2.75 2.75 3.00 3.25 3.50 3.50 9.00 9.00 9.00 10.00 10.00 10.00
1000+ 1.50 1.50 1.50 1.50 1.50 1.50 9.00 9.00 9.00 10.00 10.00 10.00

Maximum charge $50.00 $100.00 $250.00 $250.00 $250.00 $750.00 
$0.01 - $50.00 8.00 8.00 8.00 7.00 7.00 

$50.01 - $1,000.00 4.50 4.50 5.00 5.00 5.00 
$1,000.00+ 1.00 1.00 2.00 2.00 2.00 

$0.01 - $50.00 6.00 6.00 8.00 7.00 7.00 
$50.01 - $1,000.00 3.75 3.75 5.00 5.00 5.00 

$1,000.00+ 1.00 1.00 2.00 2.00 2.00 
$0.01 - $50.00 12.00 12.00 12.00 10.00 10.00 

$50.01 - $1,000.00 9.00 9.00 9.00 8.00 8.00 
$1,000.00+ 2.00 2.00 2.00 2.00 2.00 

$0.01 - $50.00 15.00 15.00 15.00 13.00 13.00 
$50.01 - $1,000.00 5.00 5.00 5.00 5.00 5.00 

$1,000.00+ 2.00 2.00 2.00 2.00 2.00 
$0.01 - $50.00 12.00 12.00 12.00 11.00 11.00 

$50.01 - $1,000.00 6.00 6.00 6.00 6.00 6.00 
$1,000.00+ 2.00 2.00 2.00 2.00 2.00 

Media $1.00+ $0.15 $0.15 $0.50 $0.50 $0.50 $0.05 $0.05
Other Categories $1.00+ $0.35 $0.35 $0.50 $0.50 $0.50 $0.30 $0.30

3.39 3.39 3.58 3.77 4.85 4.85 9.00 9.00 9.00 10.00 10.00 10.00
4.77 4.77 4.81 4.86 7.73 7.73 9.00 9.00 9.00 10.00 10.00 10.00

0.83 0.79 0.75 0.71 0.62 0.49 0.49 0.49 0.45 0.40 0.35 0.30
-- 0.82 0.76 0.73 0.66 0.56 0.52 0.48 0.42 0.36 0.32 0.27

(3) Einav et al. (2018) Fraction Revenue from Auctions 

Insertion fee (by starting or reserve 
price)

Final value fee (% of closing price, 
cumulative)

same as 
Auction 

style

same as 
Auction 

style

same as 
Auction 

style

same as 
Auction 

style

same as 
Auction 

style

(2) Final Value Fee (%) at Median Price in Auction Sample ($31)
(1) Final Value Fee (%) at Average Price in Auction Sample ($97)

(4) Backus et al. (2018) Fraction Revenue from Auctions 

Auction

Posted 
Price

Final value fee (% 
of posted price, 

cumulative)

Insertion fee (by 
posted price)

Consumer 
Electronics 

Computers & 
Networking

Clothing, Shoes 
& Accessories

Media

All Other 
Categories

same as 
Auction 

style

same as 
Auction 

style

Notes: Fees come from archived eBay.com pages on Wayback Machine (one snapshot per year), accessed on October 18, 2019; the dates and URLs for each snapshot are
found in Coey et al. (2020b). No final value fee charged if item not sold. Starting in 2011, final value includes shipping fee. First 50 listings per month have no insertion
fees starting in 2011 for auctions and 2013 for posted prices. “Media” category nests Books, Music, DVDs & Movies, Video Games. “Consumer Electronics” category nests
Consumer Electronics, Video Game Systems, Cameras & Photo. Some additional category-specific exceptions are omitted from table, as are other optional promotion or
listing add-on fees. Insertion and final value fees after 2015 are relatively constant and are omitted from table. Rows (1) and (2) at bottom of table show commission based
only on auction final value fees evaluated at the same price in different years: $97 for row (1) (the mean of auction price plus shipping in the paper sample) and $31 for (2)
(the median). Rows (3) comes from Figure 1 of Einav et al. (2018) and row (4) from Figure 1 of Backus et al. (2018).
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